feat: Add results relating to the SM ACCs
This commit is contained in:
parent
e9600cc68b
commit
891979b1c9
8 changed files with 1098 additions and 1 deletions
78
HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean
Normal file
78
HepLean/AnomalyCancellation/SM/NoGrav/One/Lemmas.lean
Normal file
|
@ -0,0 +1,78 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SM.Basic
|
||||
import HepLean.AnomalyCancellation.SM.NoGrav.Basic
|
||||
import HepLean.AnomalyCancellation.SM.NoGrav.One.LinearParameterization
|
||||
universe v u
|
||||
/-!
|
||||
# Lemmas for 1 family SM Accs
|
||||
|
||||
The main result of this file is the conclusion of this paper:
|
||||
https://arxiv.org/abs/1907.00514
|
||||
|
||||
That eveery solution to the ACCs without gravity satifies for free the gravitational anomaly.
|
||||
-/
|
||||
|
||||
namespace SM
|
||||
namespace SMNoGrav
|
||||
namespace One
|
||||
|
||||
open SMCharges
|
||||
open SMACCs
|
||||
open BigOperators
|
||||
|
||||
|
||||
lemma E_zero_iff_Q_zero {S : (SMNoGrav 1).Sols} : Q S.val (0 : Fin 1) = 0 ↔
|
||||
E S.val (0 : Fin 1) = 0 := by
|
||||
let S' := linearParameters.bijection.symm S.1.1
|
||||
have hC := cubeSol S
|
||||
have hS' := congrArg (fun S => S.val) (linearParameters.bijection.right_inv S.1.1)
|
||||
change S'.asCharges = S.val at hS'
|
||||
rw [← hS'] at hC
|
||||
apply Iff.intro
|
||||
intro hQ
|
||||
exact S'.cubic_zero_Q'_zero hC hQ
|
||||
intro hE
|
||||
exact S'.cubic_zero_E'_zero hC hE
|
||||
|
||||
|
||||
|
||||
lemma accGrav_Q_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) = 0) :
|
||||
accGrav S.val = 0 := by
|
||||
rw [accGrav]
|
||||
simp only [SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk]
|
||||
erw [hQ, E_zero_iff_Q_zero.mp hQ]
|
||||
have h1 := SU2Sol S.1.1
|
||||
have h2 := SU3Sol S.1.1
|
||||
simp only [accSU2, SMSpecies_numberCharges, Finset.univ_unique, Fin.default_eq_zero, Fin.isValue,
|
||||
Finset.sum_singleton, LinearMap.coe_mk, AddHom.coe_mk, accSU3] at h1 h2
|
||||
erw [hQ] at h1 h2
|
||||
simp_all
|
||||
linear_combination 3 * h2
|
||||
|
||||
lemma accGrav_Q_neq_zero {S : (SMNoGrav 1).Sols} (hQ : Q S.val (0 : Fin 1) ≠ 0) :
|
||||
accGrav S.val = 0 := by
|
||||
have hE := E_zero_iff_Q_zero.mpr.mt hQ
|
||||
let S' := linearParametersQENeqZero.bijection.symm ⟨S.1.1, And.intro hQ hE⟩
|
||||
have hC := cubeSol S
|
||||
have hS' := congrArg (fun S => S.val.val)
|
||||
(linearParametersQENeqZero.bijection.right_inv ⟨S.1.1, And.intro hQ hE⟩)
|
||||
change _ = S.val at hS'
|
||||
rw [← hS'] at hC
|
||||
rw [← hS']
|
||||
exact S'.grav_of_cubic hC
|
||||
|
||||
/-- Any solution to the ACCs without gravity satifies the gravitational ACC. -/
|
||||
theorem accGravSatisfied {S : (SMNoGrav 1).Sols} : accGrav S.val = 0 := by
|
||||
by_cases hQ : Q S.val (0 : Fin 1)= 0
|
||||
exact accGrav_Q_zero hQ
|
||||
exact accGrav_Q_neq_zero hQ
|
||||
|
||||
|
||||
end One
|
||||
end SMNoGrav
|
||||
end SM
|
Loading…
Add table
Add a link
Reference in a new issue