feat: Weyl fermion contraction, unit, metric

This commit is contained in:
jstoobysmith 2024-10-15 11:29:18 +00:00
parent b54fb52ff1
commit 89d1b1a50b
5 changed files with 1176 additions and 168 deletions

View file

@ -47,6 +47,18 @@ def leftHanded : Rep SL(2,) := Rep.of {
simp only [LinearMap.coe_mk, AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply,
mulVec_mulVec]}
/-- The standard basis on left-handed Weyl fermions. -/
def leftBasis : Basis (Fin 2) leftHanded := Basis.ofEquivFun
(Equiv.linearEquiv LeftHandedModule.toFin2Fun)
@[simp]
lemma leftBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
(LinearMap.toMatrix leftBasis leftBasis) (leftHanded.ρ M) i j = M.1 i j := by
rw [LinearMap.toMatrix_apply]
simp [leftBasis]
change (M.1 *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, mul_one]
/-- The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)ᵀ. In index notation corresponds to a Weyl fermion with indices ψ^a. -/
def altLeftHanded : Rep SL(2,) := Rep.of {
@ -70,6 +82,18 @@ def altLeftHanded : Rep SL(2,) := Rep.of {
rw [Matrix.mul_inv_rev]
exact transpose_mul _ _}
/-- The standard basis on alt-left-handed Weyl fermions. -/
def altLeftBasis : Basis (Fin 2) altLeftHanded := Basis.ofEquivFun
(Equiv.linearEquiv AltLeftHandedModule.toFin2Fun)
@[simp]
lemma altLeftBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
(LinearMap.toMatrix altLeftBasis altLeftBasis) (altLeftHanded.ρ M) i j = (M.1⁻¹)ᵀ i j := by
rw [LinearMap.toMatrix_apply]
simp only [altLeftBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change ((M.1⁻¹)ᵀ *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
/-- The vector space ^2 carrying the conjugate representation of SL(2,C).
In index notation corresponds to a Weyl fermion with indices ψ_{dot a}. -/
def rightHanded : Rep SL(2,) := Rep.of {
@ -90,6 +114,18 @@ def rightHanded : Rep SL(2,) := Rep.of {
simp only [SpecialLinearGroup.coe_mul, RCLike.star_def, Matrix.map_mul, LinearMap.coe_mk,
AddHom.coe_mk, LinearMap.mul_apply, LinearEquiv.apply_symm_apply, mulVec_mulVec]}
/-- The standard basis on right-handed Weyl fermions. -/
def rightBasis : Basis (Fin 2) rightHanded := Basis.ofEquivFun
(Equiv.linearEquiv RightHandedModule.toFin2Fun)
@[simp]
lemma rightBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
(LinearMap.toMatrix rightBasis rightBasis) (rightHanded.ρ M) i j = (M.1.map star) i j := by
rw [LinearMap.toMatrix_apply]
simp only [rightBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change (M.1.map star *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
/-- The vector space ^2 carrying the representation of SL(2,C) given by
M → (M⁻¹)^†.
In index notation this corresponds to a Weyl fermion with index `ψ^{dot a}`. -/
@ -114,6 +150,19 @@ def altRightHanded : Rep SL(2,) := Rep.of {
rw [Matrix.mul_inv_rev]
exact conjTranspose_mul _ _}
/-- The standard basis on alt-right-handed Weyl fermions. -/
def altRightBasis : Basis (Fin 2) altRightHanded := Basis.ofEquivFun
(Equiv.linearEquiv AltRightHandedModule.toFin2Fun)
@[simp]
lemma altRightBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
(LinearMap.toMatrix altRightBasis altRightBasis) (altRightHanded.ρ M) i j =
((M.1⁻¹).conjTranspose) i j := by
rw [LinearMap.toMatrix_apply]
simp only [altRightBasis, Basis.coe_ofEquivFun, Basis.ofEquivFun_repr_apply, transpose_apply]
change ((M.1⁻¹).conjTranspose *ᵥ (Pi.single j 1)) i = _
simp only [mulVec_single, transpose_apply, mul_one]
/-!
## Equivalences between Weyl fermion vector spaces.
@ -224,174 +273,6 @@ informal_lemma rightHandedWeylAltEquiv_equivariant where
action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightHandedWeylAltEquiv]
/-!
## Contraction of Weyl fermions.
-/
open CategoryTheory.MonoidalCategory
/-- The bi-linear map corresponding to contraction of a left-handed Weyl fermion with a
alt-left-handed Weyl fermion. -/
def leftAltBi : leftHanded →ₗ[] altLeftHanded →ₗ[] where
toFun ψ := {
toFun := fun φ => ψ.toFin2 ⬝ᵥ φ.toFin2,
map_add' := by
intro φ φ'
simp only [map_add]
rw [dotProduct_add]
map_smul' := by
intro r φ
simp only [LinearEquiv.map_smul]
rw [dotProduct_smul]
rfl}
map_add' ψ ψ':= by
refine LinearMap.ext (fun φ => ?_)
simp only [map_add, LinearMap.coe_mk, AddHom.coe_mk, LinearMap.add_apply]
rw [add_dotProduct]
map_smul' r ψ := by
refine LinearMap.ext (fun φ => ?_)
simp only [LinearEquiv.map_smul, LinearMap.coe_mk, AddHom.coe_mk]
rw [smul_dotProduct]
rfl
/-- The bi-linear map corresponding to contraction of a alt-left-handed Weyl fermion with a
left-handed Weyl fermion. -/
def altLeftBi : altLeftHanded →ₗ[] leftHanded →ₗ[] where
toFun ψ := {
toFun := fun φ => ψ.toFin2 ⬝ᵥ φ.toFin2,
map_add' := by
intro φ φ'
simp only [map_add]
rw [dotProduct_add]
map_smul' := by
intro r φ
simp only [LinearEquiv.map_smul]
rw [dotProduct_smul]
rfl}
map_add' ψ ψ':= by
refine LinearMap.ext (fun φ => ?_)
simp only [map_add, add_dotProduct, vec2_dotProduct, Fin.isValue, LinearMap.coe_mk,
AddHom.coe_mk, LinearMap.add_apply]
map_smul' ψ ψ' := by
refine LinearMap.ext (fun φ => ?_)
simp only [_root_.map_smul, smul_dotProduct, vec2_dotProduct, Fin.isValue, smul_eq_mul,
LinearMap.coe_mk, AddHom.coe_mk, RingHom.id_apply, LinearMap.smul_apply]
/-- The linear map from leftHandedWeyl ⊗ altLeftHandedWeyl to given by
summing over components of leftHandedWeyl and altLeftHandedWeyl in the
standard basis (i.e. the dot product).
Physically, the contraction of a left-handed Weyl fermion with a alt-left-handed Weyl fermion.
In index notation this is ψ_a φ^a. -/
def leftAltContraction : leftHanded ⊗ altLeftHanded ⟶ 𝟙_ (Rep SL(2,)) where
hom := TensorProduct.lift leftAltBi
comm M := by
apply TensorProduct.ext'
intro ψ φ
change (M.1 *ᵥ ψ.toFin2) ⬝ᵥ (M.1⁻¹ᵀ *ᵥ φ.toFin2) = ψ.toFin2 ⬝ᵥ φ.toFin2
rw [dotProduct_mulVec, vecMul_transpose, mulVec_mulVec]
simp
lemma leftAltContraction_hom_tmul (ψ : leftHanded) (φ : altLeftHanded) :
leftAltContraction.hom (ψ ⊗ₜ φ) = ψ.toFin2 ⬝ᵥ φ.toFin2 := by
rw [leftAltContraction]
erw [TensorProduct.lift.tmul]
rfl
/-- The linear map from altLeftHandedWeyl ⊗ leftHandedWeyl to given by
summing over components of altLeftHandedWeyl and leftHandedWeyl in the
standard basis (i.e. the dot product).
Physically, the contraction of a alt-left-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^a ψ_a. -/
def altLeftContraction : altLeftHanded ⊗ leftHanded ⟶ 𝟙_ (Rep SL(2,)) where
hom := TensorProduct.lift altLeftBi
comm M := by
apply TensorProduct.ext'
intro φ ψ
change (M.1⁻¹ᵀ *ᵥ φ.toFin2) ⬝ᵥ (M.1 *ᵥ ψ.toFin2) = φ.toFin2 ⬝ᵥ ψ.toFin2
rw [dotProduct_mulVec, mulVec_transpose, vecMul_vecMul]
simp
lemma altLeftContraction_hom_tmul (φ : altLeftHanded) (ψ : leftHanded) :
altLeftContraction.hom (φ ⊗ₜ ψ) = φ.toFin2 ⬝ᵥ ψ.toFin2 := by
rw [altLeftContraction]
erw [TensorProduct.lift.tmul]
rfl
lemma leftAltContraction_apply_symm (ψ : leftHanded) (φ : altLeftHanded) :
leftAltContraction.hom (ψ ⊗ₜ φ) = altLeftContraction.hom (φ ⊗ₜ ψ) := by
rw [altLeftContraction_hom_tmul, leftAltContraction_hom_tmul]
exact dotProduct_comm ψ.toFin2 φ.toFin2
/-- A manifestation of the statement that `ψ ψ' = - ψ' ψ` where `ψ` and `ψ'`
are `leftHandedWeyl`. -/
lemma leftAltContraction_apply_leftHandedAltEquiv (ψ ψ' : leftHanded) :
leftAltContraction.hom (ψ ⊗ₜ leftHandedAltEquiv.hom.hom ψ') =
- leftAltContraction.hom (ψ' ⊗ₜ leftHandedAltEquiv.hom.hom ψ) := by
rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul,
leftHandedAltEquiv_hom_hom_apply, leftHandedAltEquiv_hom_hom_apply]
simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit,
CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse,
Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj,
cons_mulVec, cons_dotProduct, zero_mul, one_mul, dotProduct_empty, add_zero, zero_add, neg_mul,
empty_mulVec, LinearEquiv.apply_symm_apply, dotProduct_cons, mul_neg, neg_add_rev, neg_neg]
ring
/-- A manifestation of the statement that `φ φ' = - φ' φ` where `φ` and `φ'` are
`altLeftHandedWeyl`. -/
lemma leftAltContraction_apply_leftHandedAltEquiv_inv (φ φ' : altLeftHanded) :
leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ ⊗ₜ φ') =
- leftAltContraction.hom (leftHandedAltEquiv.inv.hom φ' ⊗ₜ φ) := by
rw [leftAltContraction_hom_tmul, leftAltContraction_hom_tmul,
leftHandedAltEquiv_inv_hom_apply, leftHandedAltEquiv_inv_hom_apply]
simp only [CategoryTheory.Monoidal.transportStruct_tensorUnit,
CategoryTheory.Equivalence.symm_functor, Action.functorCategoryEquivalence_inverse,
Action.FunctorCategoryEquivalence.inverse_obj_V, CategoryTheory.Monoidal.tensorUnit_obj,
cons_mulVec, cons_dotProduct, zero_mul, neg_mul, one_mul, dotProduct_empty, add_zero, zero_add,
empty_mulVec, LinearEquiv.apply_symm_apply, neg_add_rev, neg_neg]
ring
informal_lemma leftAltWeylContraction_symm_altLeftWeylContraction where
math :≈ "The linear map altLeftWeylContraction is leftAltWeylContraction composed
with the braiding of the tensor product."
deps :≈ [``leftAltContraction, ``altLeftContraction]
informal_lemma altLeftWeylContraction_invariant where
math :≈ "The contraction altLeftWeylContraction is invariant with respect to
the action of SL(2,C) on leftHandedWeyl and altLeftHandedWeyl."
deps :≈ [``altLeftContraction]
informal_definition rightAltWeylContraction where
math :≈ "The linear map from rightHandedWeyl ⊗ altRightHandedWeyl to given by
summing over components of rightHandedWeyl and altRightHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is ψ_{dot a} φ^{dot a}."
deps :≈ [``rightHanded, ``altRightHanded]
informal_lemma rightAltWeylContraction_invariant where
math :≈ "The contraction rightAltWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``rightAltWeylContraction]
informal_definition altRightWeylContraction where
math :≈ "The linear map from altRightHandedWeyl ⊗ rightHandedWeyl to given by
summing over components of altRightHandedWeyl and rightHandedWeyl in the
standard basis (i.e. the dot product)."
physics :≈ "The contraction of a right-handed Weyl fermion with a left-handed Weyl fermion.
In index notation this is φ^{dot a} ψ_{dot a}."
deps :≈ [``rightHanded, ``altRightHanded]
informal_lemma rightAltWeylContraction_symm_altRightWeylContraction where
math :≈ "The linear map altRightWeylContraction is rightAltWeylContraction composed
with the braiding of the tensor product."
deps :≈ [``rightAltWeylContraction, ``altRightWeylContraction]
informal_lemma altRightWeylContraction_invariant where
math :≈ "The contraction altRightWeylContraction is invariant with respect to
the action of SL(2,C) on rightHandedWeyl and altRightHandedWeyl."
deps :≈ [``altRightWeylContraction]
end
end Fermion