feat: Weyl fermion contraction, unit, metric

This commit is contained in:
jstoobysmith 2024-10-15 11:29:18 +00:00
parent b54fb52ff1
commit 89d1b1a50b
5 changed files with 1176 additions and 168 deletions

View file

@ -0,0 +1,213 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.WeylFermion.Basic
import HepLean.SpaceTime.WeylFermion.Contraction
import Mathlib.LinearAlgebra.TensorProduct.Matrix
import HepLean.SpaceTime.WeylFermion.Two
/-!
# Metrics of Weyl fermions
We define the metrics for Weyl fermions, often denoted `ε` in the literature.
These allow us to go from left-handed to alt-left-handed Weyl fermions and back,
and from right-handed to alt-right-handed Weyl fermions and back.
-/
namespace Fermion
noncomputable section
open Matrix
open MatrixGroups
open Complex
open TensorProduct
open CategoryTheory.MonoidalCategory
def metricRaw : Matrix (Fin 2) (Fin 2) := !![0, 1; -1, 0]
lemma comm_metricRaw (M : SL(2,)) : M.1 * metricRaw = metricRaw * (M.1⁻¹)ᵀ := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
simp only [Fin.isValue, mul_zero, mul_neg, mul_one, zero_add, add_zero, transpose_apply, of_apply,
cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_fin_const, head_cons,
cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, zero_smul, tail_cons, one_smul,
empty_vecMul, neg_smul, neg_cons, neg_neg, neg_empty, empty_mul, Equiv.symm_apply_apply]
lemma metricRaw_comm (M : SL(2,)) : metricRaw * M.1 = (M.1⁻¹)ᵀ * metricRaw := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
Matrix.mul_fin_two, eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᵀ]
simp only [Fin.isValue, zero_mul, one_mul, zero_add, neg_mul, add_zero, transpose_apply, of_apply,
cons_val', cons_val_zero, empty_val', cons_val_fin_one, cons_val_one, head_fin_const, head_cons,
cons_mul, Nat.succ_eq_add_one, Nat.reduceAdd, vecMul_cons, smul_cons, smul_eq_mul, mul_zero,
mul_one, smul_empty, tail_cons, neg_smul, mul_neg, neg_cons, neg_neg, neg_zero, neg_empty,
empty_vecMul, add_cons, empty_add_empty, empty_mul, Equiv.symm_apply_apply]
lemma star_comm_metricRaw (M : SL(2,)) : M.1.map star * metricRaw = metricRaw * ((M.1)⁻¹)ᴴ := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᴴ]
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]
simp
lemma metricRaw_comm_star (M : SL(2,)) : metricRaw * M.1.map star = ((M.1)⁻¹)ᴴ * metricRaw := by
rw [metricRaw]
rw [SpaceTime.SL2C.inverse_coe, eta_fin_two M.1]
rw [SpecialLinearGroup.coe_inv, Matrix.adjugate_fin_two,
eta_fin_two !![M.1 1 1, -M.1 0 1; -M.1 1 0, M.1 0 0]ᴴ]
rw [eta_fin_two (!![M.1 0 0, M.1 0 1; M.1 1 0, M.1 1 1].map star)]
simp
/-- The metric `εₐₐ` as an element of `(leftHanded ⊗ leftHanded).V`. -/
def leftMetricVal : (leftHanded ⊗ leftHanded).V :=
leftLeftToMatrix.symm (- metricRaw)
/-- The metric `εₐₐ` as a morphism `𝟙_ (Rep SL(2,)) ⟶ leftHanded ⊗ leftHanded`,
making manifest its invariance under the action of `SL(2,)`. -/
def leftMetric : 𝟙_ (Rep SL(2,)) ⟶ leftHanded ⊗ leftHanded where
hom := {
toFun := fun a =>
let a' : := a
a' • leftMetricVal,
map_add' := fun x y => by
simp only [add_smul]
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp
let x' : := x
change x' • leftMetricVal =
(TensorProduct.map (leftHanded.ρ M) (leftHanded.ρ M)) (x' • leftMetricVal)
simp
apply congrArg
simp [leftMetricVal]
erw [leftLeftToMatrix_ρ_symm]
apply congrArg
rw [comm_metricRaw, mul_assoc, ← @transpose_mul]
simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero,
not_false_eq_true, mul_nonsing_inv, transpose_one, mul_one]
/-- The metric `εᵃᵃ` as an element of `(altLeftHanded ⊗ altLeftHanded).V`. -/
def altLeftMetricVal : (altLeftHanded ⊗ altLeftHanded).V :=
altLeftaltLeftToMatrix.symm metricRaw
/-- The metric `εᵃᵃ` as a morphism `𝟙_ (Rep SL(2,)) ⟶ altLeftHanded ⊗ altLeftHanded`,
making manifest its invariance under the action of `SL(2,)`. -/
def altLeftMetric : 𝟙_ (Rep SL(2,)) ⟶ altLeftHanded ⊗ altLeftHanded where
hom := {
toFun := fun a =>
let a' : := a
a' • altLeftMetricVal,
map_add' := fun x y => by
simp only [add_smul]
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp
let x' : := x
change x' • altLeftMetricVal =
(TensorProduct.map (altLeftHanded.ρ M) (altLeftHanded.ρ M)) (x' • altLeftMetricVal)
simp
apply congrArg
simp [altLeftMetricVal]
erw [altLeftaltLeftToMatrix_ρ_symm]
apply congrArg
rw [← metricRaw_comm, mul_assoc]
simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero,
not_false_eq_true, mul_nonsing_inv, mul_one]
/-- The metric `ε_{dot a}_{dot a}` as an element of `(rightHanded ⊗ rightHanded).V`. -/
def rightMetricVal : (rightHanded ⊗ rightHanded).V :=
rightRightToMatrix.symm (- metricRaw)
/-- The metric `ε_{dot a}_{dot a}` as a morphism `𝟙_ (Rep SL(2,)) ⟶ rightHanded ⊗ rightHanded`,
making manifest its invariance under the action of `SL(2,)`. -/
def rightMetric : 𝟙_ (Rep SL(2,)) ⟶ rightHanded ⊗ rightHanded where
hom := {
toFun := fun a =>
let a' : := a
a' • rightMetricVal,
map_add' := fun x y => by
simp only [add_smul]
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp
let x' : := x
change x' • rightMetricVal =
(TensorProduct.map (rightHanded.ρ M) (rightHanded.ρ M)) (x' • rightMetricVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V, rightMetricVal, map_neg, neg_inj]
trans rightRightToMatrix.symm ((M.1).map star * metricRaw * ((M.1).map star)ᵀ)
· apply congrArg
rw [star_comm_metricRaw, mul_assoc]
have h1 : ((M.1)⁻¹ᴴ * ((M.1).map star)ᵀ) = 1 := by
trans (M.1)⁻¹ᴴ * ((M.1))ᴴ
· rfl
rw [← @conjTranspose_mul]
simp only [SpecialLinearGroup.det_coe, isUnit_iff_ne_zero, ne_eq, one_ne_zero,
not_false_eq_true, mul_nonsing_inv, conjTranspose_one]
rw [h1]
simp
· rw [← rightRightToMatrix_ρ_symm metricRaw M]
rfl
/-- The metric `ε^{dot a}^{dot a}` as an element of `(altRightHanded ⊗ altRightHanded).V`. -/
def altRightMetricVal : (altRightHanded ⊗ altRightHanded).V :=
altRightAltRightToMatrix.symm (metricRaw)
/-- The metric `ε^{dot a}^{dot a}` as a morphism
`𝟙_ (Rep SL(2,)) ⟶ altRightHanded ⊗ altRightHanded`,
making manifest its invariance under the action of `SL(2,)`. -/
def altRightMetric : 𝟙_ (Rep SL(2,)) ⟶ altRightHanded ⊗ altRightHanded where
hom := {
toFun := fun a =>
let a' : := a
a' • altRightMetricVal,
map_add' := fun x y => by
simp only [add_smul]
map_smul' := fun m x => by
simp only [smul_smul]
rfl}
comm M := by
ext x : 2
simp
let x' : := x
change x' • altRightMetricVal =
(TensorProduct.map (altRightHanded.ρ M) (altRightHanded.ρ M)) (x' • altRightMetricVal)
simp only [Action.instMonoidalCategory_tensorObj_V, _root_.map_smul]
apply congrArg
simp only [Action.instMonoidalCategory_tensorObj_V]
trans altRightAltRightToMatrix.symm
(((M.1)⁻¹).conjTranspose * metricRaw * (((M.1)⁻¹).conjTranspose)ᵀ)
· rw [altRightMetricVal]
apply congrArg
rw [← metricRaw_comm_star, mul_assoc]
have h1 : ((M.1).map star * (M.1)⁻¹ᴴᵀ) = 1 := by
refine transpose_eq_one.mp ?_
rw [@transpose_mul]
simp
change (M.1)⁻¹ᴴ * (M.1)ᴴ = 1
rw [← @conjTranspose_mul]
simp
rw [h1, mul_one]
· rw [← altRightAltRightToMatrix_ρ_symm metricRaw M]
rfl
end
end Fermion