refactor: Partial refactor of the lorentz group

This commit is contained in:
jstoobysmith 2024-05-17 11:52:16 -04:00
parent fdf5fda1e7
commit 89e940a029
4 changed files with 465 additions and 0 deletions

View file

@ -0,0 +1,204 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.Metric
import Mathlib.GroupTheory.SpecificGroups.KleinFour
/-!
# The Lorentz Group
We define the Lorentz group.
## TODO
- Show that the Lorentz is a Lie group.
- Prove that the restricted Lorentz group is equivalent to the connected component of the
identity.
- Define the continuous maps from `ℝ³` to `restrictedLorentzGroup` defining boosts.
## References
- http://home.ku.edu.tr/~amostafazadeh/phys517_518/phys517_2016f/Handouts/A_Jaffi_Lorentz_Group.pdf
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
/-- We say a matrix `Λ` preserves `ηLin` if for all `x` and `y`,
`ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y`. -/
def PreservesηLin (Λ : Matrix (Fin 4) (Fin 4) ) : Prop :=
∀ (x y : spaceTime), ηLin (Λ *ᵥ x) (Λ *ᵥ y) = ηLin x y
namespace PreservesηLin
variable (Λ : Matrix (Fin 4) (Fin 4) )
lemma iff_on_right : PreservesηLin Λ ↔
∀ (x y : spaceTime), ηLin x ((η * Λᵀ * η * Λ) *ᵥ y) = ηLin x y := by
apply Iff.intro
intro h
intro x y
have h1 := h x y
rw [ηLin_mulVec_left, mulVec_mulVec] at h1
exact h1
intro h
intro x y
rw [ηLin_mulVec_left, mulVec_mulVec]
exact h x y
lemma iff_matrix : PreservesηLin Λ ↔ η * Λᵀ * η * Λ = 1 := by
rw [iff_on_right, ηLin_matrix_eq_identity_iff (η * Λᵀ * η * Λ)]
apply Iff.intro
· simp_all [ηLin, implies_true, iff_true, one_mulVec]
· simp_all only [ηLin, LinearMap.coe_mk, AddHom.coe_mk, linearMapForSpaceTime_apply,
mulVec_mulVec, implies_true]
lemma iff_matrix' : PreservesηLin Λ ↔ Λ * (η * Λᵀ * η) = 1 := by
rw [iff_matrix]
apply Iff.intro
intro h
exact mul_eq_one_comm.mp h
intro h
exact mul_eq_one_comm.mp h
lemma iff_transpose : PreservesηLin Λ ↔ PreservesηLin Λᵀ := by
apply Iff.intro
intro h
have h1 := congrArg transpose ((iff_matrix Λ).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one] at h1
rw [iff_matrix' Λ.transpose, ← h1]
repeat rw [← mul_assoc]
intro h
have h1 := congrArg transpose ((iff_matrix Λ.transpose).mp h)
rw [transpose_mul, transpose_mul, transpose_mul, η_transpose,
← mul_assoc, transpose_one, transpose_transpose] at h1
rw [iff_matrix', ← h1]
repeat rw [← mul_assoc]
/-- The lift of a matrix which preserves `ηLin` to an invertible matrix. -/
def liftGL {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) : GL (Fin 4) :=
⟨Λ, η * Λᵀ * η , (iff_matrix' Λ).mp h , (iff_matrix Λ).mp h⟩
end PreservesηLin
/-- The Lorentz group as a subgroup of the general linear group over the reals. -/
def lorentzGroup : Subgroup (GL (Fin 4) ) where
carrier := {Λ | PreservesηLin Λ}
mul_mem' {a b} := by
intros ha hb x y
simp only [Units.val_mul, mulVec_mulVec]
rw [← mulVec_mulVec, ← mulVec_mulVec, ha, hb]
one_mem' := by
intros x y
simp
inv_mem' {a} := by
intros ha x y
simp only [coe_units_inv, ← ha ((a.1⁻¹) *ᵥ x) ((a.1⁻¹) *ᵥ y), mulVec_mulVec]
have hx : (a.1 * (a.1)⁻¹) = 1 := by
simp only [@Units.mul_eq_one_iff_inv_eq, coe_units_inv]
simp [hx]
/-- The Lorentz group is a topological group with the subset topology. -/
instance : TopologicalGroup lorentzGroup :=
Subgroup.instTopologicalGroupSubtypeMem lorentzGroup
def PreservesηLin.liftLor {Λ : Matrix (Fin 4) (Fin 4) } (h : PreservesηLin Λ) :
lorentzGroup := ⟨liftGL h, h⟩
namespace lorentzGroup
lemma mem_iff (Λ : GL (Fin 4) ): Λ ∈ lorentzGroup ↔ PreservesηLin Λ := by
rfl
/-- The transpose of an matrix in the Lorentz group is an element of the Lorentz group. -/
def transpose (Λ : lorentzGroup) : lorentzGroup :=
PreservesηLin.liftLor ((PreservesηLin.iff_transpose Λ.1).mp Λ.2)
def kernalMap : C(GL (Fin 4) , Matrix (Fin 4) (Fin 4) ) where
toFun Λ := η * Λ.1ᵀ * η * Λ.1
continuous_toFun := by
apply Continuous.mul _ Units.continuous_val
apply Continuous.mul _ continuous_const
exact Continuous.mul continuous_const (Continuous.matrix_transpose (Units.continuous_val))
lemma kernalMap_kernal_eq_lorentzGroup : lorentzGroup = kernalMap ⁻¹' {1} := by
ext Λ
erw [mem_iff Λ, PreservesηLin.iff_matrix]
rfl
/-- The Lorentz Group is a closed subset of `GL (Fin 4) `. -/
theorem isClosed_of_GL4 : IsClosed (lorentzGroup : Set (GL (Fin 4) )) := by
rw [kernalMap_kernal_eq_lorentzGroup]
exact continuous_iff_isClosed.mp kernalMap.2 {1} isClosed_singleton
section Relations
/-- The first column of a lorentz matrix. -/
@[simp]
def fstCol (Λ : lorentzGroup) : spaceTime := fun i => Λ.1 i 0
lemma ηLin_fstCol (Λ : lorentzGroup) : ηLin (fstCol Λ) (fstCol Λ) = 1 := by
rw [ηLin_expand]
have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp ((mem_iff Λ.1).mp Λ.2)) 0) 0
simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one,
not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero,
zero_add, one_apply_eq] at h00
simp only [η, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one,
vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul, cons_val_two,
Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three, head_fin_const] at h00
rw [← h00]
simp only [fstCol, Fin.isValue]
ring
lemma zero_component (x : { x : spaceTime // ηLin x x = 1}) :
x.1 0 ^ 2 = 1 + ‖x.1.space‖ ^ 2 := by
sorry
/-- The space-like part of the first row of of a Lorentz matrix. -/
@[simp]
def fstSpaceRow (Λ : lorentzGroup) : EuclideanSpace (Fin 3) := fun i => Λ.1 0 i.succ
/-- The space-like part of the first column of of a Lorentz matrix. -/
@[simp]
def fstSpaceCol (Λ : lorentzGroup) : EuclideanSpace (Fin 3) := fun i => Λ.1 i.succ 0
lemma fstSpaceRow_transpose (Λ : lorentzGroup) : fstSpaceRow (transpose Λ) = fstSpaceCol Λ := by
rfl
lemma fstSpaceCol_transpose (Λ : lorentzGroup) : fstSpaceCol (transpose Λ) = fstSpaceRow Λ := by
rfl
lemma fst_col_normalized (Λ : lorentzGroup) :
(Λ.1 0 0) ^ 2 - ‖fstSpaceCol Λ‖ ^ 2 = 1 := by
rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three]
simp
rw [show Fin.succ 2 = 3 by rfl]
have h00 := congrFun (congrFun ((PreservesηLin.iff_matrix Λ.1).mp ((mem_iff Λ.1).mp Λ.2)) 0) 0
simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one,
not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero,
zero_add, one_apply_eq] at h00
simp only [η, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one,
vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul, cons_val_two,
Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three, head_fin_const] at h00
rw [← h00]
ring
lemma fst_row_normalized
end Relations
end lorentzGroup
end spaceTime

View file

@ -0,0 +1,124 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Proper
import Mathlib.GroupTheory.SpecificGroups.KleinFour
/-!
# The Orthochronous Lorentz Group
We define the give a series of lemmas related to the orthochronous property of lorentz
matrices.
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
namespace lorentzGroup
/-- The determinant of a member of the lorentz group is `1` or `-1`. -/
lemma det_eq_one_or_neg_one (Λ : lorentzGroup) : Λ.1.1.det = 1 Λ.1.1.det = -1 := by
simpa [← sq, det_one, det_mul, det_mul, det_mul, det_transpose, det_η] using
(congrArg det ((PreservesηLin.iff_matrix' Λ.1).mp ((mem_iff Λ.1).mp Λ.2)))
local notation "ℤ₂" => Multiplicative (ZMod 2)
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
instance : DiscreteTopology ℤ₂ := by
exact forall_open_iff_discrete.mp fun _ => trivial
instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk
/-- A continuous function from `({-1, 1} : Set )` to `ℤ₂`. -/
@[simps!]
def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
toFun x := if x = ⟨1, by simp⟩ then (Additive.toMul 0) else (Additive.toMul (1 : ZMod 2))
continuous_toFun := by
haveI : DiscreteTopology ({-1, 1} : Set ) := discrete_of_t1_of_finite
exact continuous_of_discreteTopology
/-- The continuous map taking a lorentz matrix to its determinant. -/
def detContinuous : C(lorentzGroup, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨Λ.1.1.det, Or.symm (lorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
exact Continuous.matrix_det $
Continuous.comp' Units.continuous_val continuous_subtype_val}
lemma detContinuous_eq_iff_det_eq (Λ Λ' : lorentzGroup) :
detContinuous Λ = detContinuous Λ' ↔ Λ.1.1.det = Λ'.1.1.det := by
apply Iff.intro
intro h
simp [detContinuous] at h
cases' det_eq_one_or_neg_one Λ with h1 h1
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> simp_all [h1, h2, h]
rw [← toMul_zero, @Equiv.apply_eq_iff_eq] at h
change (0 : Fin 2) = (1 : Fin 2) at h
simp only [Fin.isValue, zero_ne_one] at h
nth_rewrite 2 [← toMul_zero] at h
rw [@Equiv.apply_eq_iff_eq] at h
change (1 : Fin 2) = (0 : Fin 2) at h
simp [Fin.isValue, zero_ne_one] at h
intro h
simp [detContinuous, h]
/-- The representation taking a lorentz matrix to its determinant. -/
@[simps!]
def detRep : lorentzGroup →* ℤ₂ where
toFun Λ := detContinuous Λ
map_one' := by
simp [detContinuous]
map_mul' := by
intro Λ1 Λ2
simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero,
mul_ite, mul_one, ite_mul, one_mul]
cases' (det_eq_one_or_neg_one Λ1) with h1 h1
<;> cases' (det_eq_one_or_neg_one Λ2) with h2 h2
<;> simp [h1, h2, detContinuous]
rfl
lemma detRep_continuous : Continuous detRep := detContinuous.2
lemma det_on_connected_component {Λ Λ' : lorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
Λ.1.1.det = Λ'.1.1.det := by
obtain ⟨s, hs, hΛ'⟩ := h
let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous
haveI : PreconnectedSpace s := isPreconnected_iff_preconnectedSpace.mp hs.1
simpa [f, detContinuous_eq_iff_det_eq] using
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
lemma det_of_joined {Λ Λ' : lorentzGroup} (h : Joined Λ Λ') : Λ.1.1.det = Λ'.1.1.det :=
det_on_connected_component $ pathComponent_subset_component _ h
/-- A Lorentz Matrix is proper if its determinant is 1. -/
@[simp]
def IsProper (Λ : lorentzGroup) : Prop := Λ.1.1.det = 1
instance : DecidablePred IsProper := by
intro Λ
apply Real.decidableEq
lemma IsProper_iff (Λ : lorentzGroup) : IsProper Λ ↔ detRep Λ = 1 := by
rw [show 1 = detRep 1 by simp]
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
simp only [IsProper, OneMemClass.coe_one, Units.val_one, det_one]
end lorentzGroup
end spaceTime
end

View file

@ -0,0 +1,123 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzGroup.Basic
import Mathlib.GroupTheory.SpecificGroups.KleinFour
/-!
# The Proper Lorentz Group
We define the give a series of lemmas related to the determinant of the lorentz group.
-/
noncomputable section
namespace spaceTime
open Manifold
open Matrix
open Complex
open ComplexConjugate
namespace lorentzGroup
/-- The determinant of a member of the lorentz group is `1` or `-1`. -/
lemma det_eq_one_or_neg_one (Λ : lorentzGroup) : Λ.1.1.det = 1 Λ.1.1.det = -1 := by
simpa [← sq, det_one, det_mul, det_mul, det_mul, det_transpose, det_η] using
(congrArg det ((PreservesηLin.iff_matrix' Λ.1).mp ((mem_iff Λ.1).mp Λ.2)))
local notation "ℤ₂" => Multiplicative (ZMod 2)
instance : TopologicalSpace ℤ₂ := instTopologicalSpaceFin
instance : DiscreteTopology ℤ₂ := by
exact forall_open_iff_discrete.mp fun _ => trivial
instance : TopologicalGroup ℤ₂ := TopologicalGroup.mk
/-- A continuous function from `({-1, 1} : Set )` to `ℤ₂`. -/
@[simps!]
def coeFor₂ : C(({-1, 1} : Set ), ℤ₂) where
toFun x := if x = ⟨1, by simp⟩ then (Additive.toMul 0) else (Additive.toMul (1 : ZMod 2))
continuous_toFun := by
haveI : DiscreteTopology ({-1, 1} : Set ) := discrete_of_t1_of_finite
exact continuous_of_discreteTopology
/-- The continuous map taking a lorentz matrix to its determinant. -/
def detContinuous : C(lorentzGroup, ℤ₂) :=
ContinuousMap.comp coeFor₂ {
toFun := fun Λ => ⟨Λ.1.1.det, Or.symm (lorentzGroup.det_eq_one_or_neg_one _)⟩,
continuous_toFun := by
refine Continuous.subtype_mk ?_ _
exact Continuous.matrix_det $
Continuous.comp' Units.continuous_val continuous_subtype_val}
lemma detContinuous_eq_iff_det_eq (Λ Λ' : lorentzGroup) :
detContinuous Λ = detContinuous Λ' ↔ Λ.1.1.det = Λ'.1.1.det := by
apply Iff.intro
intro h
simp [detContinuous] at h
cases' det_eq_one_or_neg_one Λ with h1 h1
<;> cases' det_eq_one_or_neg_one Λ' with h2 h2
<;> simp_all [h1, h2, h]
rw [← toMul_zero, @Equiv.apply_eq_iff_eq] at h
change (0 : Fin 2) = (1 : Fin 2) at h
simp only [Fin.isValue, zero_ne_one] at h
nth_rewrite 2 [← toMul_zero] at h
rw [@Equiv.apply_eq_iff_eq] at h
change (1 : Fin 2) = (0 : Fin 2) at h
simp [Fin.isValue, zero_ne_one] at h
intro h
simp [detContinuous, h]
/-- The representation taking a lorentz matrix to its determinant. -/
@[simps!]
def detRep : lorentzGroup →* ℤ₂ where
toFun Λ := detContinuous Λ
map_one' := by
simp [detContinuous]
map_mul' := by
intro Λ1 Λ2
simp only [Submonoid.coe_mul, Subgroup.coe_toSubmonoid, Units.val_mul, det_mul, toMul_zero,
mul_ite, mul_one, ite_mul, one_mul]
cases' (det_eq_one_or_neg_one Λ1) with h1 h1
<;> cases' (det_eq_one_or_neg_one Λ2) with h2 h2
<;> simp [h1, h2, detContinuous]
rfl
lemma detRep_continuous : Continuous detRep := detContinuous.2
lemma det_on_connected_component {Λ Λ' : lorentzGroup} (h : Λ' ∈ connectedComponent Λ) :
Λ.1.1.det = Λ'.1.1.det := by
obtain ⟨s, hs, hΛ'⟩ := h
let f : ContinuousMap s ℤ₂ := ContinuousMap.restrict s detContinuous
haveI : PreconnectedSpace s := isPreconnected_iff_preconnectedSpace.mp hs.1
simpa [f, detContinuous_eq_iff_det_eq] using
(@IsPreconnected.subsingleton ℤ₂ _ _ _ (isPreconnected_range f.2))
(Set.mem_range_self ⟨Λ, hs.2⟩) (Set.mem_range_self ⟨Λ', hΛ'⟩)
lemma det_of_joined {Λ Λ' : lorentzGroup} (h : Joined Λ Λ') : Λ.1.1.det = Λ'.1.1.det :=
det_on_connected_component $ pathComponent_subset_component _ h
/-- A Lorentz Matrix is proper if its determinant is 1. -/
@[simp]
def IsProper (Λ : lorentzGroup) : Prop := Λ.1.1.det = 1
instance : DecidablePred IsProper := by
intro Λ
apply Real.decidableEq
lemma IsProper_iff (Λ : lorentzGroup) : IsProper Λ ↔ detRep Λ = 1 := by
rw [show 1 = detRep 1 by simp]
rw [detRep_apply, detRep_apply, detContinuous_eq_iff_det_eq]
simp only [IsProper, OneMemClass.coe_one, Units.val_one, det_one]
end lorentzGroup
end spaceTime
end

View file

@ -118,6 +118,20 @@ lemma ηLin_expand (x y : spaceTime) : ηLin x y = x 0 * y 0 - x 1 * y 1 - x 2 *
cons_val_zero, cons_val_one, head_cons, mul_neg, cons_val_two, tail_cons, cons_val_three]
ring
lemma ηLin_expand_self (x : spaceTime) : ηLin x x = x 0 ^ 2 - ‖x.space‖ ^ 2 := by
rw [← @real_inner_self_eq_norm_sq, @PiLp.inner_apply, Fin.sum_univ_three, ηLin_expand]
simp only [Fin.isValue, space, cons_val_zero, RCLike.inner_apply, conj_trivial, cons_val_one,
head_cons, cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons]
ring
lemma time_elm_sq_of_ηLin (x : spaceTime) : x 0 ^ 2 = ηLin x x + ‖x.space‖ ^ 2 := by
rw [ηLin_expand_self]
ring
lemma ηLin_leq_time_sq (x : spaceTime) : ηLin x x ≤ x 0 ^ 2 := by
rw [time_elm_sq_of_ηLin]
apply (le_add_iff_nonneg_right _).mpr $ sq_nonneg ‖x.space‖
lemma ηLin_space_inner_product (x y : spaceTime) :
ηLin x y = x 0 * y 0 - ⟪x.space, y.space⟫_ := by
rw [ηLin_expand, @PiLp.inner_apply, Fin.sum_univ_three]