refactor: Index notation, computablity

This commit is contained in:
jstoobysmith 2024-08-16 15:56:18 -04:00
parent f948f504c3
commit 8a0f81ae02
13 changed files with 341 additions and 227 deletions

View file

@ -6,6 +6,8 @@ Authors: Joseph Tooby-Smith
import Mathlib.LinearAlgebra.StdBasis
import HepLean.SpaceTime.LorentzTensor.Basic
import HepLean.SpaceTime.LorentzTensor.IndexNotation.Basic
import Mathlib.LinearAlgebra.DirectSum.Finsupp
import Mathlib.LinearAlgebra.Finsupp
/-!
# Einstein notation for real tensors
@ -28,8 +30,8 @@ instance : Fintype einsteinTensorColor.Color := Unit.fintype
instance : DecidableEq einsteinTensorColor.Color := instDecidableEqPUnit
variable {R : Type} [CommSemiring R]
variable {R : Type} [CommSemiring R]
/-- The `TensorStructure` associated with `n`-dimensional tensors. -/
noncomputable def einsteinTensor (R : Type) [CommSemiring R] (n : ) : TensorStructure R where
@ -76,14 +78,37 @@ noncomputable def einsteinTensor (R : Type) [CommSemiring R] (n : ) : TensorS
simp only [tmul_zero]
exact id (Ne.symm hi)
instance : IndexNotation einsteinTensorColor.Color where
charList := {'ᵢ'}
notaEquiv :=
⟨fun _ => ⟨'ᵢ', Finset.mem_singleton.mpr rfl⟩,
fun _ => Unit.unit,
fun _ => rfl,
by
intro c
have hc2 := c.2
simp only [↓Char.isValue, Finset.mem_singleton] at hc2
exact SetCoe.ext (id (Eq.symm hc2))⟩
namespace einsteinTensor
open TensorStructure
noncomputable section
instance : OfNat einsteinTensorColor.Color 0 := ⟨PUnit.unit⟩
instance : OfNat (einsteinTensor R n).Color 0 := ⟨PUnit.unit⟩
@[simp]
lemma ofNat_inst_eq : @einsteinTensor.instOfNatColorOfNatNat R _ n =
einsteinTensor.instOfNatColorEinsteinTensorColorOfNatNat := rfl
/-- A vector from an Einstein tensor with one index. -/
def toVec : (einsteinTensor R n).Tensor ![Unit.unit] ≃ₗ[R] Fin n → R :=
PiTensorProduct.subsingletonEquiv 0
/-- A matrix from an Einstein tensor with two indices. -/
def toMatrix : (einsteinTensor R n).Tensor ![Unit.unit, Unit.unit] ≃ₗ[R] Matrix (Fin n) (Fin n) R :=
((einsteinTensor R n).mapIso ((Fin.castOrderIso
(by rfl : (Nat.succ 0).succ = Nat.succ 0 + Nat.succ 0)).toEquiv.trans
finSumFinEquiv.symm) (by funext x; fin_cases x; rfl; rfl)).trans <|
((einsteinTensor R n).tensoratorEquiv ![0] ![0]).symm.trans <|
(TensorProduct.congr ((PiTensorProduct.subsingletonEquiv 0))
((PiTensorProduct.subsingletonEquiv 0))).trans <|
(TensorProduct.congr (Finsupp.linearEquivFunOnFinite R R (Fin n)).symm
(Finsupp.linearEquivFunOnFinite R R (Fin n)).symm).trans <|
(finsuppTensorFinsupp' R (Fin n) (Fin n)).trans <|
(Finsupp.linearEquivFunOnFinite R R (Fin n × Fin n)).trans <|
(LinearEquiv.curry R (Fin n) (Fin n))
end
end einsteinTensor

View file

@ -0,0 +1,131 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.IndexNotation.TensorIndex
import HepLean.SpaceTime.LorentzTensor.IndexNotation.IndexString
import HepLean.SpaceTime.LorentzTensor.EinsteinNotation.Basic
/-!
# Index notation for Einstein tensors
-/
instance : IndexNotation einsteinTensorColor.Color where
charList := {'ᵢ'}
notaEquiv :=
⟨fun _ => ⟨'ᵢ', Finset.mem_singleton.mpr rfl⟩,
fun _ => Unit.unit,
fun _ => rfl,
by
intro c
have hc2 := c.2
simp only [↓Char.isValue, Finset.mem_singleton] at hc2
exact SetCoe.ext (id (Eq.symm hc2))⟩
namespace einsteinTensor
open einsteinTensorColor
open IndexNotation IndexString
open TensorStructure TensorIndex
variable {R : Type} [CommSemiring R] {n m : }
instance : IndexNotation (einsteinTensor R n).Color := instIndexNotationColorEinsteinTensorColor
instance : DecidableEq (einsteinTensor R n).Color := instDecidableEqColorEinsteinTensorColor
@[simp]
lemma indexNotation_eq_color : @einsteinTensor.instIndexNotationColor R _ n =
instIndexNotationColorEinsteinTensorColor := by
rfl
@[simp]
lemma decidableEq_eq_color : @einsteinTensor.instDecidableEqColor R _ n =
instDecidableEqColorEinsteinTensorColor := by
rfl
@[simp]
lemma einsteinTensor_color : (einsteinTensor R n).Color = einsteinTensorColor.Color := by
rfl
@[simp]
lemma toTensorColor_eq : (einsteinTensor R n).toTensorColor = einsteinTensorColor := by
rfl
/-- The construction of a tensor index from a tensor and a string satisfying conditions
which can be automatically checked. This is a modified version of
`TensorStructure.TensorIndex.mkDualMap` specific to real Lorentz tensors. -/
noncomputable def fromIndexStringColor {R : Type} [CommSemiring R] {cn : Fin n → einsteinTensorColor.Color}
(T : (einsteinTensor R m).Tensor cn) (s : String)
(hs : listCharIsIndexString einsteinTensorColor.Color s.toList = true)
(hn : n = (toIndexList' s hs).length)
(hD : (toIndexList' s hs).withDual = (toIndexList' s hs).withUniqueDual)
(hC : IndexList.ColorCond.bool (toIndexList' s hs))
(hd : TensorColor.ColorMap.DualMap.boolFin'
(toIndexList' s hs).colorMap (cn ∘ Fin.cast hn.symm)) :
(einsteinTensor R m).TensorIndex :=
TensorStructure.TensorIndex.mkDualMap T ⟨(toIndexList' s hs), hD,
IndexList.ColorCond.iff_bool.mpr hC⟩ hn
(TensorColor.ColorMap.DualMap.boolFin'_DualMap hd)
@[simp]
lemma fromIndexStringColor_indexList {R : Type} [CommSemiring R] {cn : Fin n → einsteinTensorColor.Color}
(T : (einsteinTensor R m).Tensor cn) (s : String)
(hs : listCharIsIndexString einsteinTensorColor.Color s.toList = true)
(hn : n = (toIndexList' s hs).length)
(hD : (toIndexList' s hs).withDual = (toIndexList' s hs).withUniqueDual)
(hC : IndexList.ColorCond.bool (toIndexList' s hs))
(hd : TensorColor.ColorMap.DualMap.boolFin'
(toIndexList' s hs).colorMap (cn ∘ Fin.cast hn.symm)) :
(fromIndexStringColor T s hs hn hD hC hd).toIndexList = toIndexList' s hs := by
rfl
/-- A tactic used to prove `boolFin` for real Lornetz tensors. -/
macro "dualMapTactic" : tactic =>
`(tactic| {
simp only [toTensorColor_eq]
decide })
/-- Notation for the construction of a tensor index from a tensor and a string.
Conditions are checked automatically. -/
notation:20 T "|" S:21 => fromIndexStringColor T S
(by decide)
(by decide) (by decide)
(by decide)
(by dualMapTactic)
/-- A tactics used to prove `colorPropBool` for real Lorentz tensors. -/
macro "prodTactic" : tactic =>
`(tactic| {
apply (ColorIndexList.AppendCond.iff_bool _ _).mpr
change @ColorIndexList.AppendCond.bool einsteinTensorColor
instIndexNotationColorEinsteinTensorColor instDecidableEqColorEinsteinTensorColor _ _
simp only [prod_toIndexList, indexNotation_eq_color, fromIndexStringColor, mkDualMap,
toTensorColor_eq, decidableEq_eq_color]
decide})
lemma mem_fin_list (n : ) (i : Fin n) : i ∈ Fin.list n := by
have h1' : (Fin.list n)[i] = i := Fin.getElem_list _ _
exact h1' ▸ List.getElem_mem _ _ _
instance (n : ) (i : Fin n) : Decidable (i ∈ Fin.list n) :=
isTrue (mem_fin_list n i)
/-- The product of Real Lorentz tensors. Conditions on indices are checked automatically. -/
notation:10 T "⊗ᵀ" S:11 => TensorIndex.prod T S (by prodTactic)
/-- An example showing the allowed constructions. -/
example (T : (einsteinTensor R n).Tensor ![Unit.unit, Unit.unit]) : True := by
let _ := T|"ᵢ₂ᵢ₃"
let _ := T|"ᵢ₁ᵢ₂" ⊗ᵀ T|"ᵢ₂ᵢ₁"
let _ := T|"ᵢ₁ᵢ₂" ⊗ᵀ T|"ᵢ₂ᵢ₁" ⊗ᵀ T|"ᵢ₃ᵢ₄"
exact trivial
end einsteinTensor

View file

@ -0,0 +1,46 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.SpaceTime.LorentzTensor.EinsteinNotation.IndexNotation
/-!
# Lemmas regarding Einstein tensors
-/
set_option profiler true
namespace einsteinTensor
open einsteinTensorColor
open IndexNotation IndexString
open TensorStructure TensorIndex
variable {R : Type} [CommSemiring R] {n m : }
/-! TODO: Fix notation here. -/
set_option maxHeartbeats 0
lemma swap_eq_transpose (T : (einsteinTensor R n).Tensor ![Unit.unit, Unit.unit]) :
(T|"ᵢ₁ᵢ₂") ≈ ((toMatrix.symm (toMatrix T).transpose)|"ᵢ₂ᵢ₁") := by
apply And.intro
apply And.intro
· simp only [toTensorColor_eq, indexNotation_eq_color, ColorIndexList.contr,
fromIndexStringColor_indexList, IndexList.contrIndexList_length]
decide
apply And.intro
· simp only [toTensorColor_eq, indexNotation_eq_color, ColorIndexList.contr,
fromIndexStringColor_indexList, IndexList.contrIndexList_length]
rw [IndexList.withUniqueDualInOther_eq_univ_iff_forall]
intro x
have h1 : (toIndexList' "ᵢ₁ᵢ₂" (by decide) : IndexList einsteinTensorColor.Color).contrIndexList.length
= 2 := by
decide
sorry
sorry
end einsteinTensor