Refactor: Change \eta

This commit is contained in:
jstoobysmith 2024-05-23 10:15:50 -04:00
parent b3fa7b503c
commit 8ab4c446da
2 changed files with 66 additions and 50 deletions

View file

@ -40,9 +40,10 @@ def fstCol (Λ : lorentzGroup) : PreFourVelocity := ⟨Λ.1 *ᵥ stdBasis 0, by
simp only [Fin.isValue, mul_apply, transpose_apply, Fin.sum_univ_four, ne_eq, zero_ne_one,
not_false_eq_true, η_off_diagonal, zero_mul, add_zero, Fin.reduceEq, one_ne_zero, mul_zero,
zero_add, one_apply_eq] at h00
simp only [η, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val', cons_val_fin_one,
vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul, cons_val_two,
Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three, head_fin_const] at h00
simp only [η_explicit, Fin.isValue, of_apply, cons_val', cons_val_zero, empty_val',
cons_val_fin_one, vecCons_const, one_mul, mul_one, cons_val_one, head_cons, mul_neg, neg_mul,
cons_val_two, Nat.succ_eq_add_one, Nat.reduceAdd, tail_cons, cons_val_three,
head_fin_const] at h00
rw [← h00]
ring⟩

View file

@ -6,6 +6,7 @@ Authors: Joseph Tooby-Smith
import HepLean.SpaceTime.Basic
import Mathlib.Analysis.InnerProductSpace.Adjoint
import Mathlib.LinearAlgebra.CliffordAlgebra.Basic
import Mathlib.Algebra.Lie.Classical
/-!
# Spacetime Metric
@ -23,51 +24,22 @@ open Complex
open ComplexConjugate
/-- The metric as a `4×4` real matrix. -/
def η : Matrix (Fin 4) (Fin 4) :=
!![1, 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0; 0, 0, 0, -1]
lemma η_off_diagonal {μ ν : Fin 4} (h : μ ≠ ν) : η μ ν = 0 := by
fin_cases μ <;>
fin_cases ν <;>
simp_all [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
lemma η_symmetric (μ ν : Fin 4) : η μ ν = η ν μ := by
by_cases h : μ = ν
rw [h]
rw [η_off_diagonal h]
refine (η_off_diagonal ?_).symm
exact fun a => h (id a.symm)
lemma η_transpose : η.transpose = η := by
funext μ ν
rw [transpose_apply, η_symmetric]
lemma det_η : η.det = - 1 := by
simp only [η, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, of_apply,
cons_val', empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply, Fin.succ_zero_eq_one,
cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply, Fin.succ_one_eq_two,
cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ, head_fin_const,
Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove, Finset.univ_unique,
Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul, Fin.succ_succAbove_zero,
Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one, even_two, Even.neg_pow,
one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero, zero_mul,
Finset.sum_const_zero]
lemma η_sq : η * η = 1 := by
funext μ ν
rw [mul_apply, Fin.sum_univ_four]
fin_cases μ <;> fin_cases ν <;>
simp [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
def η : Matrix (Fin 4) (Fin 4) := Matrix.reindex finSumFinEquiv finSumFinEquiv
$ LieAlgebra.Orthogonal.indefiniteDiagonal (Fin 1) (Fin 3)
lemma η_block : η = Matrix.reindex finSumFinEquiv finSumFinEquiv (
Matrix.fromBlocks (1 : Matrix (Fin 1) (Fin 1) ) 0 0 (-1 : Matrix (Fin 3) (Fin 3) )) := by
rw [η]
congr
simp [LieAlgebra.Orthogonal.indefiniteDiagonal]
rw [← @fromBlocks_diagonal]
refine fromBlocks_inj.mpr ?_
simp only [diagonal_one, true_and]
funext i j
fin_cases i <;> fin_cases j <;> simp
lemma η_explicit : η = !![(1 : ), 0, 0, 0; 0, -1, 0, 0; 0, 0, -1, 0; 0, 0, 0, -1] := by
rw [η_block]
apply Matrix.ext
intro i j
fin_cases i <;> fin_cases j
@ -83,19 +55,61 @@ lemma η_block : η = Matrix.reindex finSumFinEquiv finSumFinEquiv (
all_goals simp
all_goals rfl
@[simp]
lemma η_off_diagonal {μ ν : Fin 4} (h : μ ≠ ν) : η μ ν = 0 := by
fin_cases μ <;>
fin_cases ν <;>
simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one,
Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
lemma η_symmetric (μ ν : Fin 4) : η μ ν = η ν μ := by
by_cases h : μ = ν
rw [h]
rw [η_off_diagonal h]
refine (η_off_diagonal ?_).symm
exact fun a => h (id a.symm)
@[simp]
lemma η_transpose : η.transpose = η := by
funext μ ν
rw [transpose_apply, η_symmetric]
@[simp]
lemma det_η : η.det = - 1 := by
simp only [η_explicit, det_succ_row_zero, Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue,
of_apply, cons_val', empty_val', cons_val_fin_one, cons_val_zero, submatrix_apply,
Fin.succ_zero_eq_one, cons_val_one, head_cons, submatrix_submatrix, Function.comp_apply,
Fin.succ_one_eq_two, cons_val_two, tail_cons, det_unique, Fin.default_eq_zero, cons_val_succ,
head_fin_const, Fin.sum_univ_succ, Fin.val_zero, pow_zero, one_mul, Fin.zero_succAbove,
Finset.univ_unique, Fin.val_succ, Fin.coe_fin_one, zero_add, pow_one, neg_mul,
Fin.succ_succAbove_zero, Finset.sum_neg_distrib, Finset.sum_singleton, Fin.succ_succAbove_one,
even_two, Even.neg_pow, one_pow, mul_one, mul_neg, neg_neg, mul_zero, neg_zero, add_zero,
zero_mul, Finset.sum_const_zero]
@[simp]
lemma η_sq : η * η = 1 := by
funext μ ν
rw [mul_apply, Fin.sum_univ_four]
fin_cases μ <;> fin_cases ν <;>
simp [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
lemma η_diag_mul_self (μ : Fin 4) : η μ μ * η μ μ = 1 := by
fin_cases μ
<;> simp [η]
<;> simp [η_explicit]
lemma η_mulVec (x : spaceTime) : η *ᵥ x = ![x 0, -x 1, -x 2, -x 3] := by
rw [explicit x]
rw [η]
rw [η_explicit]
funext i
rw [mulVec, dotProduct, Fin.sum_univ_four]
fin_cases i <;>
simp [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
simp [Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]
@ -176,7 +190,7 @@ lemma ηLin_symm (x y : spaceTime) : ηLin x y = ηLin y x := by
lemma ηLin_stdBasis_apply (μ : Fin 4) (x : spaceTime) : ηLin (stdBasis μ) x = η μ μ * x μ := by
rw [ηLin_expand]
fin_cases μ
<;> simp [stdBasis_0, stdBasis_1, stdBasis_2, stdBasis_3, η]
<;> simp [stdBasis_0, stdBasis_1, stdBasis_2, stdBasis_3, η_explicit]
lemma ηLin_η_stdBasis (μ ν : Fin 4) : ηLin (stdBasis μ) (stdBasis ν) = η μ ν := by
@ -219,7 +233,8 @@ lemma ηLin_matrix_eq_identity_iff (Λ : Matrix (Fin 4) (Fin 4) ) :
have h1 := h (stdBasis μ) (stdBasis ν)
rw [ηLin_matrix_stdBasis, ηLin_η_stdBasis] at h1
fin_cases μ <;> fin_cases ν <;>
simp_all [η, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one, Matrix.cons_val_one,
simp_all [η_explicit, Fin.zero_eta, Matrix.cons_val', Matrix.cons_val_fin_one,
Matrix.cons_val_one,
Matrix.cons_val_succ', Matrix.cons_val_zero, Matrix.empty_val', Matrix.head_cons,
Matrix.head_fin_const, Matrix.head_cons, Matrix.vecCons_const, Fin.mk_one, Fin.mk_one,
vecHead, vecTail, Function.comp_apply]