feat: IsNormOne & IsNormZero properties
This commit is contained in:
parent
41b2f009d9
commit
8b056d925b
1 changed files with 41 additions and 0 deletions
|
@ -54,12 +54,53 @@ informal_lemma contractSelfField_non_degenerate where
|
|||
in the tensor species."
|
||||
deps :≈ [``contractSelfField]
|
||||
|
||||
informal_lemma contractSelfField_tensorTree where
|
||||
math :≈ "The contraction ⟪ψ, φ⟫ₜₛ is related to the tensor tree
|
||||
{ψ | μ ⊗ (S.dualRepIsoDiscrete c).hom φ | μ}ᵀ "
|
||||
deps :≈ [``contractSelfField, ``TensorTree]
|
||||
|
||||
/-!
|
||||
|
||||
## IsNormOne
|
||||
|
||||
-/
|
||||
|
||||
/-- A vector satisfies `IsNormOne` if it has norm equal to one, i.e. if `⟪ψ, ψ⟫ₜₛ = 1`. -/
|
||||
def IsNormOne {c : S.C} (ψ : S.FD.obj (Discrete.mk c)) : Prop := ⟪ψ, ψ⟫ₜₛ = 1
|
||||
|
||||
/-- If a vector is norm-one, then any vector in the orbit of that vector is also norm-one. -/
|
||||
@[simp]
|
||||
lemma action_isNormOne_of_isNormOne {c : S.C} {ψ : S.FD.obj (Discrete.mk c)} (g : S.G) :
|
||||
S.IsNormOne ((S.FD.obj (Discrete.mk c)).ρ g ψ) ↔ S.IsNormOne ψ := by
|
||||
simp only [IsNormOne, contractSelfField_equivariant]
|
||||
|
||||
/-!
|
||||
|
||||
## IsNormZero
|
||||
|
||||
-/
|
||||
|
||||
/-- A vector satisfies `IsNormZero` if it has norm equal to zero, i.e. if `⟪ψ, ψ⟫ₜₛ = 0`. -/
|
||||
def IsNormZero {c : S.C} (ψ : S.FD.obj (Discrete.mk c)) : Prop := ⟪ψ, ψ⟫ₜₛ = 0
|
||||
|
||||
/-- The zero vector has norm equal to zero. -/
|
||||
@[simp]
|
||||
lemma zero_isNormZero {c : S.C} : @IsNormZero S c 0 := by
|
||||
simp only [IsNormZero, tmul_zero, map_zero]
|
||||
|
||||
/-- If a vector is norm-zero, then any scalar multiple of that vector is also norm-zero. -/
|
||||
lemma smul_isNormZero_of_isNormZero {c : S.C} {ψ : S.FD.obj (Discrete.mk c)}
|
||||
(h : S.IsNormZero ψ ) (a : S.k) : S.IsNormZero (a • ψ) := by
|
||||
simp only [IsNormZero, tmul_smul, map_smul, smul_tmul]
|
||||
rw [h]
|
||||
simp only [smul_eq_mul, mul_zero]
|
||||
|
||||
/-- If a vector is norm-zero, then any vector in the orbit of that vector is also norm-zero. -/
|
||||
@[simp]
|
||||
lemma action_isNormZero_of_isNormZero {c : S.C} {ψ : S.FD.obj (Discrete.mk c)} (g : S.G) :
|
||||
S.IsNormZero ((S.FD.obj (Discrete.mk c)).ρ g ψ) ↔ S.IsNormZero ψ := by
|
||||
simp only [IsNormZero, contractSelfField_equivariant]
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue