feat: equivariance of rising and lowering indices
This commit is contained in:
parent
a97cb62379
commit
8b2c853fd8
3 changed files with 115 additions and 17 deletions
|
@ -287,9 +287,9 @@ lemma contrAll_rep {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (
|
|||
simp only [mk_apply]
|
||||
apply congrArg
|
||||
funext x
|
||||
rw [← repColorModule_colorModuleCast_apply]
|
||||
rw [← colorModuleCast_equivariant_apply]
|
||||
nth_rewrite 2 [← contrDual_inv (c x) g]
|
||||
rfl
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma contrAll_rep_apply {c : X → 𝓣.Color} {d : Y → 𝓣.Color} (e : X ≃ Y) (h : c = 𝓣.τ ∘ d ∘ e)
|
||||
|
|
|
@ -27,6 +27,9 @@ class MulActionTensor (G : Type) [Monoid G] (𝓣 : TensorStructure R) where
|
|||
/-- The contraction of a vector with its dual is invariant under the group action. -/
|
||||
contrDual_inv : ∀ μ g, 𝓣.contrDual μ ∘ₗ
|
||||
TensorProduct.map (repColorModule μ g) (repColorModule (𝓣.τ μ) g) = 𝓣.contrDual μ
|
||||
/-- The invariance of the metric under the group action. -/
|
||||
metric_inv : ∀ μ g, (TensorProduct.map (repColorModule μ g) (repColorModule μ g)) (𝓣.metric μ) =
|
||||
𝓣.metric μ
|
||||
|
||||
namespace MulActionTensor
|
||||
|
||||
|
@ -50,6 +53,9 @@ def compHom (f : H →* G) : MulActionTensor H 𝓣 where
|
|||
contrDual_inv μ h := by
|
||||
simp only [MonoidHom.coe_comp, Function.comp_apply]
|
||||
rw [contrDual_inv]
|
||||
metric_inv μ h := by
|
||||
simp only [MonoidHom.coe_comp, Function.comp_apply]
|
||||
rw [metric_inv]
|
||||
|
||||
/-- The trivial `MulActionTensor` defined via trivial representations. -/
|
||||
def trivial : MulActionTensor G 𝓣 where
|
||||
|
@ -57,6 +63,9 @@ def trivial : MulActionTensor G 𝓣 where
|
|||
contrDual_inv μ g := by
|
||||
simp only [Representation.trivial, MonoidHom.one_apply, TensorProduct.map_one]
|
||||
rfl
|
||||
metric_inv μ g := by
|
||||
simp only [Representation.trivial, MonoidHom.one_apply, TensorProduct.map_one]
|
||||
rfl
|
||||
|
||||
end MulActionTensor
|
||||
|
||||
|
@ -74,6 +83,40 @@ variable {d : ℕ} {X Y Y' Z : Type} [Fintype X] [DecidableEq X] [Fintype Y] [De
|
|||
|
||||
/-!
|
||||
|
||||
# Equivariance properties involving modules
|
||||
|
||||
-/
|
||||
|
||||
@[simp]
|
||||
lemma contrDual_equivariant_tmul (g : G) (x : 𝓣.ColorModule μ) (y : 𝓣.ColorModule (𝓣.τ μ)) :
|
||||
(𝓣.contrDual μ ((repColorModule μ g x) ⊗ₜ[R] (repColorModule (𝓣.τ μ) g y))) =
|
||||
𝓣.contrDual μ (x ⊗ₜ[R] y) := by
|
||||
trans (𝓣.contrDual μ ∘ₗ
|
||||
TensorProduct.map (repColorModule μ g) (repColorModule (𝓣.τ μ) g)) (x ⊗ₜ[R] y)
|
||||
rfl
|
||||
rw [contrDual_inv]
|
||||
|
||||
@[simp]
|
||||
lemma colorModuleCast_equivariant_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
|
||||
(𝓣.colorModuleCast h) (repColorModule μ g x) =
|
||||
(repColorModule ν g) (𝓣.colorModuleCast h x) := by
|
||||
subst h
|
||||
simp [colorModuleCast]
|
||||
|
||||
@[simp]
|
||||
lemma contrRightAux_contrDual_equivariant_tmul (g : G) (m : 𝓣.ColorModule ν ⊗[R] 𝓣.ColorModule μ)
|
||||
(x : 𝓣.ColorModule (𝓣.τ μ)) : (contrRightAux (𝓣.contrDual μ))
|
||||
((TensorProduct.map (repColorModule ν g) (repColorModule μ g) m) ⊗ₜ[R]
|
||||
(repColorModule (𝓣.τ μ) g x)) =
|
||||
repColorModule ν g ((contrRightAux (𝓣.contrDual μ)) (m ⊗ₜ[R] x)) := by
|
||||
refine TensorProduct.induction_on m (by simp) ?_ ?_
|
||||
· intro y z
|
||||
simp [contrRightAux]
|
||||
· intro x z h1 h2
|
||||
simp [add_tmul, LinearMap.map_add, h1, h2]
|
||||
|
||||
/-!
|
||||
|
||||
## Representation of tensor products
|
||||
|
||||
-/
|
||||
|
@ -89,19 +132,13 @@ def rep : Representation R G (𝓣.Tensor cX) where
|
|||
|
||||
local infixl:101 " • " => 𝓣.rep
|
||||
|
||||
lemma repColorModule_colorModuleCast_apply (h : μ = ν) (g : G) (x : 𝓣.ColorModule μ) :
|
||||
(repColorModule ν g) (𝓣.colorModuleCast h x) =
|
||||
(𝓣.colorModuleCast h) (repColorModule μ g x) := by
|
||||
subst h
|
||||
simp [colorModuleCast]
|
||||
|
||||
@[simp]
|
||||
lemma repColorModule_colorModuleCast (h : μ = ν) (g : G) :
|
||||
(repColorModule ν g) ∘ₗ (𝓣.colorModuleCast h).toLinearMap =
|
||||
(𝓣.colorModuleCast h).toLinearMap ∘ₗ (repColorModule μ g) := by
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp [repColorModule_colorModuleCast_apply]
|
||||
simp [colorModuleCast_equivariant_apply]
|
||||
|
||||
@[simp]
|
||||
lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
|
||||
|
@ -112,7 +149,7 @@ lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
|
|||
simp only [LinearMap.compMultilinearMap_apply, LinearMap.coe_comp, LinearEquiv.coe_coe,
|
||||
Function.comp_apply]
|
||||
erw [mapIso_tprod]
|
||||
simp [rep, repColorModule_colorModuleCast_apply]
|
||||
simp [rep, colorModuleCast_equivariant_apply]
|
||||
change (PiTensorProduct.map fun x => (repColorModule (cY x)) g)
|
||||
((PiTensorProduct.tprod R) fun i => (𝓣.colorModuleCast _) (x (e.symm i))) =
|
||||
(𝓣.mapIso e h) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) x))
|
||||
|
@ -120,7 +157,7 @@ lemma rep_mapIso (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) :
|
|||
apply congrArg
|
||||
funext i
|
||||
subst h
|
||||
simp [repColorModule_colorModuleCast_apply]
|
||||
simp [colorModuleCast_equivariant_apply]
|
||||
|
||||
@[simp]
|
||||
lemma rep_mapIso_apply (e : X ≃ Y) (h : cX = cY ∘ e) (g : G) (x : 𝓣.Tensor cX) :
|
||||
|
@ -143,7 +180,7 @@ lemma rep_tprod (g : G) (f : (i : X) → 𝓣.ColorModule (cX i)) :
|
|||
|
||||
-/
|
||||
|
||||
lemma rep_tensoratorEquiv (g : G) :
|
||||
lemma tensoratorEquiv_equivariant (g : G) :
|
||||
(𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g)) = 𝓣.rep g ∘ₗ
|
||||
(𝓣.tensoratorEquiv cX cY).toLinearMap := by
|
||||
apply tensorProd_piTensorProd_ext
|
||||
|
@ -156,18 +193,19 @@ lemma rep_tensoratorEquiv (g : G) :
|
|||
| Sum.inl x => rfl
|
||||
| Sum.inr x => rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) :
|
||||
@[simp]
|
||||
lemma tensoratorEquiv_equivariant_apply (g : G) (x : 𝓣.Tensor cX ⊗[R] 𝓣.Tensor cY) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((TensorProduct.map (𝓣.rep g) (𝓣.rep g)) x)
|
||||
= (𝓣.rep g) ((𝓣.tensoratorEquiv cX cY) x) := by
|
||||
trans ((𝓣.tensoratorEquiv cX cY) ∘ₗ (TensorProduct.map (𝓣.rep g) (𝓣.rep g))) x
|
||||
rfl
|
||||
rw [rep_tensoratorEquiv]
|
||||
rw [tensoratorEquiv_equivariant]
|
||||
rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_tmul (g : G) (x : 𝓣.Tensor cX) (y : 𝓣.Tensor cY) :
|
||||
(𝓣.tensoratorEquiv cX cY) ((g • x) ⊗ₜ[R] (g • y)) =
|
||||
g • ((𝓣.tensoratorEquiv cX cY) (x ⊗ₜ[R] y)) := by
|
||||
nth_rewrite 1 [← rep_tensoratorEquiv_apply]
|
||||
nth_rewrite 1 [← tensoratorEquiv_equivariant_apply]
|
||||
rfl
|
||||
|
||||
lemma rep_tensoratorEquiv_symm (g : G) :
|
||||
|
@ -175,7 +213,7 @@ lemma rep_tensoratorEquiv_symm (g : G) :
|
|||
(𝓣.tensoratorEquiv cX cY).symm.toLinearMap := by
|
||||
rw [LinearEquiv.eq_comp_toLinearMap_symm, LinearMap.comp_assoc,
|
||||
LinearEquiv.toLinearMap_symm_comp_eq]
|
||||
exact Eq.symm (rep_tensoratorEquiv 𝓣 g)
|
||||
exact Eq.symm (tensoratorEquiv_equivariant 𝓣 g)
|
||||
|
||||
@[simp]
|
||||
lemma rep_tensoratorEquiv_symm_apply (g : G) (x : 𝓣.Tensor (Sum.elim cX cY)) :
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzTensor.Basic
|
||||
import HepLean.SpaceTime.LorentzTensor.MulActionTensor
|
||||
/-!
|
||||
|
||||
# Rising and Lowering of indices
|
||||
|
@ -31,6 +31,9 @@ variable {d : ℕ} {X Y Y' Z W C P : Type} [Fintype X] [DecidableEq X] [Fintype
|
|||
{cX cX2 : X → 𝓣.Color} {cY : Y → 𝓣.Color} {cZ : Z → 𝓣.Color}
|
||||
{cW : W → 𝓣.Color} {cY' : Y' → 𝓣.Color} {μ ν: 𝓣.Color}
|
||||
|
||||
variable {G H : Type} [Group G] [Group H] [MulActionTensor G 𝓣]
|
||||
local infixl:101 " • " => 𝓣.rep
|
||||
|
||||
/-!
|
||||
|
||||
## Properties of the unit
|
||||
|
@ -120,6 +123,27 @@ def dualizeModule (μ : 𝓣.Color) : 𝓣.ColorModule μ ≃ₗ[R] 𝓣.ColorMo
|
|||
Function.comp_apply, lTensorHomToHomLTensor_apply, LinearMap.id_coe, id_eq,
|
||||
metric_contrRight_unit]
|
||||
|
||||
@[simp]
|
||||
lemma dualizeModule_equivariant (g : G) :
|
||||
(𝓣.dualizeModule μ) ∘ₗ ((MulActionTensor.repColorModule μ) g) =
|
||||
(MulActionTensor.repColorModule (𝓣.τ μ) g) ∘ₗ (𝓣.dualizeModule μ) := by
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp only [dualizeModule, dualizeFun, dualizeSymm, LinearEquiv.ofLinear_toLinearMap,
|
||||
LinearMap.coe_comp, LinearEquiv.coe_coe, Function.comp_apply, colorModuleCast_equivariant_apply,
|
||||
lTensorHomToHomLTensor_apply, LinearMap.id_coe, id_eq]
|
||||
nth_rewrite 1 [← MulActionTensor.metric_inv (𝓣.τ μ) g]
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma dualizeModule_equivariant_apply (g : G) (x : 𝓣.ColorModule μ) :
|
||||
(𝓣.dualizeModule μ) ((MulActionTensor.repColorModule μ) g x) =
|
||||
(MulActionTensor.repColorModule (𝓣.τ μ) g) (𝓣.dualizeModule μ x) := by
|
||||
trans ((𝓣.dualizeModule μ) ∘ₗ ((MulActionTensor.repColorModule μ) g)) x
|
||||
rfl
|
||||
rw [dualizeModule_equivariant]
|
||||
rfl
|
||||
|
||||
/-- Dualizes the color of all indicies of a tensor by contraction with the metric. -/
|
||||
def dualizeAll : 𝓣.Tensor cX ≃ₗ[R] 𝓣.Tensor (𝓣.τ ∘ cX) := by
|
||||
refine LinearEquiv.ofLinear
|
||||
|
@ -141,6 +165,24 @@ def dualizeAll : 𝓣.Tensor cX ≃ₗ[R] 𝓣.Tensor (𝓣.τ ∘ cX) := by
|
|||
apply congrArg
|
||||
simp
|
||||
|
||||
@[simp]
|
||||
lemma dualizeAll_equivariant (g : G) : (𝓣.dualizeAll.toLinearMap) ∘ₗ (@rep R _ G _ 𝓣 _ X cX g)
|
||||
= 𝓣.rep g ∘ₗ (𝓣.dualizeAll.toLinearMap) := by
|
||||
apply LinearMap.ext
|
||||
intro x
|
||||
simp [dualizeAll]
|
||||
refine PiTensorProduct.induction_on' x ?_ (by
|
||||
intro a b hx a
|
||||
simp [map_add, add_tmul, hx]
|
||||
simp_all only [Function.comp_apply, LinearMap.coe_comp, LinearMap.id_coe, id_eq])
|
||||
intro rx fx
|
||||
simp
|
||||
apply congrArg
|
||||
change (PiTensorProduct.map _) ((PiTensorProduct.tprod R) _) =
|
||||
(𝓣.rep g) ((PiTensorProduct.map _) ((PiTensorProduct.tprod R) fx))
|
||||
rw [PiTensorProduct.map_tprod, PiTensorProduct.map_tprod]
|
||||
simp
|
||||
|
||||
lemma dualize_cond (e : C ⊕ P ≃ X) :
|
||||
cX = Sum.elim (cX ∘ e ∘ Sum.inl) (cX ∘ e ∘ Sum.inr) ∘ e.symm := by
|
||||
rw [Equiv.eq_comp_symm]
|
||||
|
@ -169,6 +211,24 @@ def dualize (e : C ⊕ P ≃ X) : 𝓣.Tensor cX ≃ₗ[R]
|
|||
(𝓣.tensoratorEquiv _ _) ≪≫ₗ
|
||||
𝓣.mapIso e (𝓣.dualize_cond' e)
|
||||
|
||||
/-- Dualizing indices is equivariant with respect to the group action. This is the
|
||||
applied version of this statement. -/
|
||||
@[simp]
|
||||
lemma dualize_equivariant_apply (e : C ⊕ P ≃ X) (g : G) (x : 𝓣.Tensor cX) :
|
||||
𝓣.dualize e (g • x) = g • (𝓣.dualize e x) := by
|
||||
simp only [dualize, TensorProduct.congr, LinearEquiv.refl_toLinearMap, LinearEquiv.refl_symm,
|
||||
LinearEquiv.trans_apply, rep_mapIso_apply, rep_tensoratorEquiv_symm_apply,
|
||||
LinearEquiv.ofLinear_apply]
|
||||
rw [← LinearMap.comp_apply (TensorProduct.map _ _), ← TensorProduct.map_comp]
|
||||
simp only [dualizeAll_equivariant, LinearMap.id_comp]
|
||||
have h1 {M N A B C : Type} [AddCommMonoid M] [AddCommMonoid N] [AddCommMonoid A]
|
||||
[AddCommMonoid B] [AddCommMonoid C] [Module R M] [Module R N] [Module R A] [Module R B]
|
||||
[Module R C] (f : M →ₗ[R] N) (g : A →ₗ[R] B) (h : B →ₗ[R] C) : TensorProduct.map (h ∘ₗ g) f
|
||||
= TensorProduct.map h f ∘ₗ TensorProduct.map g (LinearMap.id) :=
|
||||
ext rfl
|
||||
rw [h1, LinearMap.coe_comp, Function.comp_apply]
|
||||
simp only [tensoratorEquiv_equivariant_apply, rep_mapIso_apply]
|
||||
|
||||
end TensorStructure
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue