feat: Add symm of unit for complex lorentz

This commit is contained in:
jstoobysmith 2024-10-24 16:04:05 +00:00
parent 942ee12e60
commit 8c584431c4
3 changed files with 66 additions and 0 deletions

View file

@ -193,6 +193,28 @@ lemma contr_coContrUnit (x : complexContr) :
simp only [Fin.isValue, one_smul]
repeat rw [add_assoc]
/-!
## Symmetry properties of the units
-/
open CategoryTheory
lemma contrCoUnit_symm :
(contrCoUnit.hom (1 : )) = (complexContr ◁ 𝟙 _).hom ((β_ complexCo complexContr).hom.hom
(coContrUnit.hom (1 : ))) := by
rw [contrCoUnit_apply_one, contrCoUnitVal_expand_tmul]
rw [coContrUnit_apply_one, coContrUnitVal_expand_tmul]
rfl
lemma coContrUnit_symm :
(coContrUnit.hom (1 : )) = (complexCo ◁ 𝟙 _).hom ((β_ complexContr complexCo).hom.hom
(contrCoUnit.hom (1 : ))) := by
rw [coContrUnit_apply_one, coContrUnitVal_expand_tmul]
rw [contrCoUnit_apply_one, contrCoUnitVal_expand_tmul]
rfl
end Lorentz
end

View file

@ -325,5 +325,40 @@ lemma contr_rightAltRightUnit (x : altRightHanded) :
erw [TensorProduct.lid_tmul, TensorProduct.lid_tmul]
simp only [Fin.isValue, one_smul]
/-!
## Symmetry properties of the units
-/
open CategoryTheory
lemma altLeftLeftUnit_symm :
(altLeftLeftUnit.hom (1 : )) = (altLeftHanded ◁ 𝟙 _).hom ((β_ leftHanded altLeftHanded ).hom.hom
(leftAltLeftUnit.hom (1 : ))) := by
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
rfl
lemma leftAltLeftUnit_symm :
(leftAltLeftUnit.hom (1 : )) = (leftHanded ◁ 𝟙 _).hom ((β_ altLeftHanded leftHanded ).hom.hom
(altLeftLeftUnit.hom (1 : ))) := by
rw [altLeftLeftUnit_apply_one, altLeftLeftUnitVal_expand_tmul]
rw [leftAltLeftUnit_apply_one, leftAltLeftUnitVal_expand_tmul]
rfl
lemma altRightRightUnit_symm :
(altRightRightUnit.hom (1 : )) = (altRightHanded ◁ 𝟙 _).hom ((β_ rightHanded altRightHanded ).hom.hom
(rightAltRightUnit.hom (1 : ))) := by
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
rfl
lemma rightAltRightUnit_symm :
(rightAltRightUnit.hom (1 : )) = (rightHanded ◁ 𝟙 _).hom ((β_ altRightHanded rightHanded ).hom.hom
(altRightRightUnit.hom (1 : ))) := by
rw [altRightRightUnit_apply_one, altRightRightUnitVal_expand_tmul]
rw [rightAltRightUnit_apply_one, rightAltRightUnitVal_expand_tmul]
rfl
end
end Fermion

View file

@ -175,6 +175,15 @@ def complexLorentzTensor : TensorSpecies where
| Color.downR => Fermion.contr_rightAltRightUnit
| Color.up => Lorentz.contr_coContrUnit
| Color.down => Lorentz.contr_contrCoUnit
unit_symm := fun c =>
match c with
| Color.upL => Fermion.altLeftLeftUnit_symm
| Color.downL => Fermion.leftAltLeftUnit_symm
| Color.upR => Fermion.altRightRightUnit_symm
| Color.downR => Fermion.rightAltRightUnit_symm
| Color.up => Lorentz.coContrUnit_symm
| Color.down => Lorentz.contrCoUnit_symm
contr_metric := by sorry
instance : DecidableEq complexLorentzTensor.C := Fermion.instDecidableEqColor