docs: Field specification docs

This commit is contained in:
jstoobysmith 2025-02-06 10:06:05 +00:00
parent 3f2593b5ff
commit 8cc273fe38
13 changed files with 234 additions and 166 deletions

View file

@ -131,18 +131,18 @@ def crPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
| FieldOp.outAsymp _ => 0
@[simp]
lemma crPartF_negAsymp (φ : 𝓕.asymptoticDOF × (Fin 3 → )) :
lemma crPartF_negAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
crPartF (FieldOp.inAsymp φ) = ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩ := by
simp [crPartF]
@[simp]
lemma crPartF_position (φ : 𝓕.positionDOF × SpaceTime) :
lemma crPartF_position (φ : (Σ f, 𝓕.PositionLabel f) × SpaceTime) :
crPartF (FieldOp.position φ) =
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩ := by
simp [crPartF]
@[simp]
lemma crPartF_posAsymp (φ : 𝓕.asymptoticDOF × (Fin 3 → )) :
lemma crPartF_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
crPartF (FieldOp.outAsymp φ) = 0 := by
simp [crPartF]
@ -156,18 +156,18 @@ def anPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
| FieldOp.outAsymp φ => ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩
@[simp]
lemma anPartF_negAsymp (φ : 𝓕.asymptoticDOF × (Fin 3 → )) :
lemma anPartF_negAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
anPartF (FieldOp.inAsymp φ) = 0 := by
simp [anPartF]
@[simp]
lemma anPartF_position (φ : 𝓕.positionDOF × SpaceTime) :
lemma anPartF_position (φ : (Σ f, 𝓕.PositionLabel f) × SpaceTime) :
anPartF (FieldOp.position φ) =
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩ := by
simp [anPartF]
@[simp]
lemma anPartF_posAsymp (φ : 𝓕.asymptoticDOF × (Fin 3 → )) :
lemma anPartF_posAsymp (φ : (Σ f, 𝓕.AsymptoticLabel f) × (Fin 3 → )) :
anPartF (FieldOp.outAsymp φ) = ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩ := by
simp [anPartF]