bump: v4.10.0
This commit is contained in:
parent
2439ec3d1d
commit
8ed80a1367
11 changed files with 34 additions and 30 deletions
|
@ -189,7 +189,6 @@ lemma conj_Vtb_cross_product {V : CKMMatrix} {τ : ℝ}
|
|||
simp only [← exp_conj, _root_.map_mul, conj_ofReal, conj_I, mul_neg, Fin.isValue, neg_mul]
|
||||
field_simp
|
||||
ring_nf
|
||||
simp
|
||||
|
||||
end crossProduct
|
||||
|
||||
|
@ -199,8 +198,6 @@ lemma conj_Vtb_mul_Vud {V : CKMMatrix} {τ : ℝ}
|
|||
[V]cs * (normSq [V]ud + normSq [V]us) + [V]cb * conj [V]ub * [V]us := by
|
||||
rw [conj_Vtb_cross_product hτ]
|
||||
simp [exp_neg]
|
||||
have h1 := exp_ne_zero (τ * I)
|
||||
field_simp
|
||||
have h2 : ([V]cs * [V]ud - [V]us * [V]cd) * conj [V]ud = [V]cs
|
||||
* [V]ud * conj [V]ud - [V]us * ([V]cd * conj [V]ud) := by
|
||||
ring
|
||||
|
@ -215,8 +212,6 @@ lemma conj_Vtb_mul_Vus {V : CKMMatrix} {τ : ℝ}
|
|||
- ([V]cd * (normSq [V]ud + normSq [V]us) + [V]cb * conj ([V]ub) * [V]ud) := by
|
||||
rw [conj_Vtb_cross_product hτ]
|
||||
simp [exp_neg]
|
||||
have h1 := exp_ne_zero (τ * I)
|
||||
field_simp
|
||||
have h2 : ([V]cs * [V]ud - [V]us * [V]cd) * conj [V]us = ([V]cs
|
||||
* conj [V]us) * [V]ud - [V]us * [V]cd * conj [V]us := by
|
||||
ring
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue