refactor: Rename States to FieldOps
This commit is contained in:
parent
171e80fc04
commit
8f41de5785
36 changed files with 946 additions and 946 deletions
|
@ -19,8 +19,8 @@ open FieldStatistic
|
|||
namespace FieldOpAlgebra
|
||||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
(φs1 φs2 : List 𝓕.CrAnStates) (h :
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp}
|
||||
(φs1 φs2 : List 𝓕.CrAnFieldOp) (h :
|
||||
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2) :
|
||||
|
@ -139,8 +139,8 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3
|
|||
map_smul, smul_sub]
|
||||
simp_all
|
||||
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
||||
(φs1 φs2 : List 𝓕.CrAnStates) :
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp}
|
||||
(φs1 φs2 : List 𝓕.CrAnFieldOp) :
|
||||
ι 𝓣ᶠ(ofCrAnListF φs1 * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * ofCrAnListF φs2)
|
||||
= 0 := by
|
||||
by_cases h :
|
||||
|
@ -153,7 +153,7 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp} (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0 := by
|
||||
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span ℂ (Set.range ofCrAnListFBasis)) :
|
||||
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0
|
||||
|
@ -181,7 +181,7 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates}
|
|||
· intro x hx hpx
|
||||
simp_all [pb, hpx]
|
||||
|
||||
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnFieldOp}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) =
|
||||
ι ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * 𝓣ᶠ(a * b)) := by
|
||||
|
@ -277,7 +277,7 @@ lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
|
|||
· intro x hx hpx
|
||||
simp_all [pb, hpx]
|
||||
|
||||
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnStates}
|
||||
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnFieldOp}
|
||||
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) = 0 := by
|
||||
rw [timeOrderF_timeOrderF_mid]
|
||||
|
@ -393,18 +393,18 @@ scoped[FieldSpecification.FieldOpAlgebra] notation "𝓣(" a ")" => timeOrder a
|
|||
lemma timeOrder_eq_ι_timeOrderF (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓣(ι a) = ι 𝓣ᶠ(a) := rfl
|
||||
|
||||
lemma timeOrder_ofFieldOp_ofFieldOp_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||||
lemma timeOrder_ofFieldOp_ofFieldOp_ordered {φ ψ : 𝓕.FieldOp} (h : timeOrderRel φ ψ) :
|
||||
𝓣(ofFieldOp φ * ofFieldOp ψ) = ofFieldOp φ * ofFieldOp ψ := by
|
||||
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
|
||||
timeOrderF_ofFieldOpF_ofFieldOpF_ordered h]
|
||||
|
||||
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||||
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered {φ ψ : 𝓕.FieldOp} (h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣(ofFieldOp φ * ofFieldOp ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofFieldOp ψ * ofFieldOp φ := by
|
||||
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
|
||||
timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered h]
|
||||
simp
|
||||
|
||||
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder {φ ψ : 𝓕.States}
|
||||
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder {φ ψ : 𝓕.FieldOp}
|
||||
(h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣(ofFieldOp φ * ofFieldOp ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣(ofFieldOp ψ * ofFieldOp φ) := by
|
||||
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
|
||||
|
@ -417,11 +417,11 @@ lemma timeOrder_ofFieldOpList_nil : 𝓣(ofFieldOpList (𝓕 := 𝓕) []) = 1 :=
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.States) :
|
||||
lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.FieldOp) :
|
||||
𝓣(ofFieldOpList [φ]) = ofFieldOpList [φ] := by
|
||||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofFieldOpListF_singleton]
|
||||
|
||||
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
(Finset.filter (fun x =>
|
||||
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
|
||||
|
@ -429,7 +429,7 @@ lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_eq_maxTimeField_mul_finset]
|
||||
rfl
|
||||
|
||||
lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
|
||||
lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnFieldOp}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣(a * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
|
||||
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(a * b) := by
|
||||
|
@ -443,7 +443,7 @@ lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
|
|||
· simp_all
|
||||
· simp_all
|
||||
|
||||
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
|
||||
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnFieldOp}
|
||||
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (b : 𝓕.FieldOpAlgebra) :
|
||||
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
|
||||
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(b) := by
|
||||
|
@ -452,7 +452,7 @@ lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
|
|||
rw [timeOrder_superCommute_eq_time_mid hφψ hψφ]
|
||||
simp
|
||||
|
||||
lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
|
||||
lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnFieldOp}
|
||||
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) :
|
||||
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ) = 0 := by
|
||||
rw [ofCrAnFieldOp, ofCrAnFieldOp]
|
||||
|
@ -463,7 +463,7 @@ lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
|
|||
rw [ι_timeOrderF_superCommuteF_neq_time]
|
||||
exact hφψ
|
||||
|
||||
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.States}
|
||||
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.FieldOp}
|
||||
(hφψ : ¬ (timeOrderRel φ ψ ∧ timeOrderRel ψ φ)) :
|
||||
𝓣([anPart φ,ofFieldOp ψ]ₛ) = 0 := by
|
||||
rw [ofFieldOp_eq_sum]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue