refactor: Rename States to FieldOps

This commit is contained in:
jstoobysmith 2025-02-03 11:28:14 +00:00
parent 171e80fc04
commit 8f41de5785
36 changed files with 946 additions and 946 deletions

View file

@ -19,8 +19,8 @@ open FieldStatistic
namespace FieldOpAlgebra
variable {𝓕 : FieldSpecification}
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnStates}
(φs1 φs2 : List 𝓕.CrAnStates) (h :
lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp}
(φs1 φs2 : List 𝓕.CrAnFieldOp) (h :
crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2) :
@ -139,8 +139,8 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_eq_time_ofCrAnListF {φ1 φ2 φ3
map_smul, smul_sub]
simp_all
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnStates}
(φs1 φs2 : List 𝓕.CrAnStates) :
lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp}
(φs1 φs2 : List 𝓕.CrAnFieldOp) :
ι 𝓣ᶠ(ofCrAnListF φs1 * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * ofCrAnListF φs2)
= 0 := by
by_cases h :
@ -153,7 +153,7 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF_ofCrAnListF {φ1 φ2 φ3 : 𝓕.
simp
@[simp]
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates} (a b : 𝓕.FieldOpFreeAlgebra) :
lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnFieldOp} (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0 := by
let pb (b : 𝓕.FieldOpFreeAlgebra) (hc : b ∈ Submodule.span (Set.range ofCrAnListFBasis)) :
Prop := ι 𝓣ᶠ(a * [ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca * b) = 0
@ -181,7 +181,7 @@ lemma ι_timeOrderF_superCommuteF_superCommuteF {φ1 φ2 φ3 : 𝓕.CrAnStates}
· intro x hx hpx
simp_all [pb, hpx]
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnFieldOp}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) =
ι ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * 𝓣ᶠ(a * b)) := by
@ -277,7 +277,7 @@ lemma ι_timeOrderF_superCommuteF_eq_time {φ ψ : 𝓕.CrAnStates}
· intro x hx hpx
simp_all [pb, hpx]
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnStates}
lemma ι_timeOrderF_superCommuteF_neq_time {φ ψ : 𝓕.CrAnFieldOp}
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) (a b : 𝓕.FieldOpFreeAlgebra) :
ι 𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) = 0 := by
rw [timeOrderF_timeOrderF_mid]
@ -393,18 +393,18 @@ scoped[FieldSpecification.FieldOpAlgebra] notation "𝓣(" a ")" => timeOrder a
lemma timeOrder_eq_ι_timeOrderF (a : 𝓕.FieldOpFreeAlgebra) :
𝓣(ι a) = ι 𝓣ᶠ(a) := rfl
lemma timeOrder_ofFieldOp_ofFieldOp_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
lemma timeOrder_ofFieldOp_ofFieldOp_ordered {φ ψ : 𝓕.FieldOp} (h : timeOrderRel φ ψ) :
𝓣(ofFieldOp φ * ofFieldOp ψ) = ofFieldOp φ * ofFieldOp ψ := by
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
timeOrderF_ofFieldOpF_ofFieldOpF_ordered h]
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered {φ ψ : 𝓕.FieldOp} (h : ¬ timeOrderRel φ ψ) :
𝓣(ofFieldOp φ * ofFieldOp ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofFieldOp ψ * ofFieldOp φ := by
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered h]
simp
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder {φ ψ : 𝓕.States}
lemma timeOrder_ofFieldOp_ofFieldOp_not_ordered_eq_timeOrder {φ ψ : 𝓕.FieldOp}
(h : ¬ timeOrderRel φ ψ) :
𝓣(ofFieldOp φ * ofFieldOp ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣(ofFieldOp ψ * ofFieldOp φ) := by
rw [ofFieldOp, ofFieldOp, ← map_mul, timeOrder_eq_ι_timeOrderF,
@ -417,11 +417,11 @@ lemma timeOrder_ofFieldOpList_nil : 𝓣(ofFieldOpList (𝓕 := 𝓕) []) = 1 :=
simp
@[simp]
lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.States) :
lemma timeOrder_ofFieldOpList_singleton (φ : 𝓕.FieldOp) :
𝓣(ofFieldOpList [φ]) = ofFieldOpList [φ] := by
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_ofFieldOpListF_singleton]
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
𝓣(ofFieldOpList (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
(Finset.filter (fun x =>
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
@ -429,7 +429,7 @@ lemma timeOrder_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.S
rw [ofFieldOpList, timeOrder_eq_ι_timeOrderF, timeOrderF_eq_maxTimeField_mul_finset]
rfl
lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnFieldOp}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (a b : 𝓕.FieldOpAlgebra) :
𝓣(a * [ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(a * b) := by
@ -443,7 +443,7 @@ lemma timeOrder_superCommute_eq_time_mid {φ ψ : 𝓕.CrAnStates}
· simp_all
· simp_all
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnFieldOp}
(hφψ : crAnTimeOrderRel φ ψ) (hψφ : crAnTimeOrderRel ψ φ) (b : 𝓕.FieldOpAlgebra) :
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * b) =
[ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ * 𝓣(b) := by
@ -452,7 +452,7 @@ lemma timeOrder_superCommute_eq_time_left {φ ψ : 𝓕.CrAnStates}
rw [timeOrder_superCommute_eq_time_mid hφψ hψφ]
simp
lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnFieldOp}
(hφψ : ¬ (crAnTimeOrderRel φ ψ ∧ crAnTimeOrderRel ψ φ)) :
𝓣([ofCrAnFieldOp φ, ofCrAnFieldOp ψ]ₛ) = 0 := by
rw [ofCrAnFieldOp, ofCrAnFieldOp]
@ -463,7 +463,7 @@ lemma timeOrder_superCommute_neq_time {φ ψ : 𝓕.CrAnStates}
rw [ι_timeOrderF_superCommuteF_neq_time]
exact hφψ
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.States}
lemma timeOrder_superCommute_anPart_ofFieldOp_neq_time {φ ψ : 𝓕.FieldOp}
(hφψ : ¬ (timeOrderRel φ ψ ∧ timeOrderRel ψ φ)) :
𝓣([anPart φ,ofFieldOp ψ]ₛ) = 0 := by
rw [ofFieldOp_eq_sum]