refactor: Rename States to FieldOps
This commit is contained in:
parent
171e80fc04
commit
8f41de5785
36 changed files with 946 additions and 946 deletions
|
@ -20,7 +20,7 @@ namespace FieldOpAlgebra
|
|||
open WickContraction
|
||||
open EqTimeOnly
|
||||
|
||||
lemma timeOrder_ofFieldOpList_eqTimeOnly (φs : List 𝓕.States) :
|
||||
lemma timeOrder_ofFieldOpList_eqTimeOnly (φs : List 𝓕.FieldOp) :
|
||||
timeOrder (ofFieldOpList φs) = ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs)}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
|
||||
rw [static_wick_theorem φs]
|
||||
|
@ -43,7 +43,7 @@ lemma timeOrder_ofFieldOpList_eqTimeOnly (φs : List 𝓕.States) :
|
|||
exact x.2
|
||||
exact x.2
|
||||
|
||||
lemma timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.States) :
|
||||
lemma timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.FieldOp) :
|
||||
timeOrder (ofFieldOpList φs) = 𝓣(𝓝(ofFieldOpList φs)) +
|
||||
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
|
||||
|
@ -70,14 +70,14 @@ lemma timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.States) :
|
|||
rw [← e2.symm.sum_comp]
|
||||
rfl
|
||||
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.States) :
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_eqTimeOnly_empty (φs : List 𝓕.FieldOp) :
|
||||
𝓣(𝓝(ofFieldOpList φs)) = 𝓣(ofFieldOpList φs) -
|
||||
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓣(𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) := by
|
||||
rw [timeOrder_ofFieldOpList_eq_eqTimeOnly_empty]
|
||||
simp
|
||||
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_haveEqTime_sum_not_haveEqTime (φs : List 𝓕.States) :
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_haveEqTime_sum_not_haveEqTime (φs : List 𝓕.FieldOp) :
|
||||
𝓣(𝓝(ofFieldOpList φs)) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
|
||||
+ (∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}),
|
||||
|
@ -93,7 +93,7 @@ lemma normalOrder_timeOrder_ofFieldOpList_eq_haveEqTime_sum_not_haveEqTime (φs
|
|||
Equiv.sumCompl_apply_inl, Equiv.sumCompl_apply_inr, ne_eq, sub_left_inj, e1]
|
||||
rw [add_comm]
|
||||
|
||||
lemma haveEqTime_wick_sum_eq_split (φs : List 𝓕.States) :
|
||||
lemma haveEqTime_wick_sum_eq_split (φs : List 𝓕.FieldOp) :
|
||||
(∑ (φsΛ : {φsΛ : WickContraction φs.length // HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)) =
|
||||
∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
|
@ -122,7 +122,7 @@ lemma haveEqTime_wick_sum_eq_split (φs : List 𝓕.States) :
|
|||
congr 1
|
||||
rw [@join_uncontractedListGet]
|
||||
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive (φs : List 𝓕.States) :
|
||||
lemma normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive (φs : List 𝓕.FieldOp) :
|
||||
𝓣(𝓝(ofFieldOpList φs)) = (∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ))
|
||||
+ ∑ (φsΛ : {φsΛ // φsΛ.EqTimeOnly (φs := φs) ∧ φsΛ ≠ empty}),
|
||||
|
@ -142,9 +142,9 @@ lemma normalOrder_timeOrder_ofFieldOpList_eq_not_haveEqTime_sub_inductive (φs :
|
|||
rw [← smul_sub, ← mul_sub]
|
||||
|
||||
lemma wicks_theorem_normal_order_empty : 𝓣(𝓝(ofFieldOpList [])) =
|
||||
∑ (φsΛ : {φsΛ : WickContraction ([] : List 𝓕.States).length // ¬ HaveEqTime φsΛ}),
|
||||
∑ (φsΛ : {φsΛ : WickContraction ([] : List 𝓕.FieldOp).length // ¬ HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ) := by
|
||||
let e2 : {φsΛ : WickContraction ([] : List 𝓕.States).length // ¬ HaveEqTime φsΛ} ≃ Unit :=
|
||||
let e2 : {φsΛ : WickContraction ([] : List 𝓕.FieldOp).length // ¬ HaveEqTime φsΛ} ≃ Unit :=
|
||||
{
|
||||
toFun := fun x => (),
|
||||
invFun := fun x => ⟨empty, by simp⟩,
|
||||
|
@ -181,7 +181,7 @@ Wicks theorem for normal ordering followed by time-ordering, states that
|
|||
for those Wick contraction `φsΛ` which do not have any equal time contractions.
|
||||
This is compared to the ordinary Wicks theorem which sums over all Wick contractions.
|
||||
-/
|
||||
theorem wicks_theorem_normal_order : (φs : List 𝓕.States) →
|
||||
theorem wicks_theorem_normal_order : (φs : List 𝓕.FieldOp) →
|
||||
𝓣(𝓝(ofFieldOpList φs)) = ∑ (φsΛ : {φsΛ : WickContraction φs.length // ¬ HaveEqTime φsΛ}),
|
||||
φsΛ.1.sign • φsΛ.1.timeContract.1 * 𝓝(ofFieldOpList [φsΛ.1]ᵘᶜ)
|
||||
| [] => wicks_theorem_normal_order_empty
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue