refactor: Rename States to FieldOps
This commit is contained in:
parent
171e80fc04
commit
8f41de5785
36 changed files with 946 additions and 946 deletions
|
@ -3,7 +3,7 @@ Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.FieldSpecification.CrAnStates
|
||||
import HepLean.PerturbationTheory.FieldSpecification.CrAnFieldOp
|
||||
import HepLean.PerturbationTheory.FieldSpecification.CrAnSection
|
||||
/-!
|
||||
|
||||
|
@ -35,63 +35,63 @@ namespace FieldSpecification
|
|||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
/-- The creation and annihlation free-algebra.
|
||||
The free algebra generated by `CrAnStates`,
|
||||
The free algebra generated by `CrAnFieldOp`,
|
||||
that is a position based states or assymptotic states with a specification of
|
||||
whether the state is a creation or annihlation state.
|
||||
As a module `FieldOpFreeAlgebra` is spanned by lists of `CrAnStates`. -/
|
||||
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra ℂ 𝓕.CrAnStates
|
||||
As a module `FieldOpFreeAlgebra` is spanned by lists of `CrAnFieldOp`. -/
|
||||
abbrev FieldOpFreeAlgebra (𝓕 : FieldSpecification) : Type := FreeAlgebra ℂ 𝓕.CrAnFieldOp
|
||||
|
||||
namespace FieldOpFreeAlgebra
|
||||
|
||||
/-- Maps a creation and annihlation state to the creation and annihlation free-algebra. -/
|
||||
def ofCrAnOpF (φ : 𝓕.CrAnStates) : FieldOpFreeAlgebra 𝓕 :=
|
||||
def ofCrAnOpF (φ : 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 :=
|
||||
FreeAlgebra.ι ℂ φ
|
||||
|
||||
/-- Maps a list creation and annihlation state to the creation and annihlation free-algebra
|
||||
by taking their product. -/
|
||||
def ofCrAnListF (φs : List 𝓕.CrAnStates) : FieldOpFreeAlgebra 𝓕 := (List.map ofCrAnOpF φs).prod
|
||||
def ofCrAnListF (φs : List 𝓕.CrAnFieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofCrAnOpF φs).prod
|
||||
|
||||
@[simp]
|
||||
lemma ofCrAnListF_nil : ofCrAnListF ([] : List 𝓕.CrAnStates) = 1 := rfl
|
||||
lemma ofCrAnListF_nil : ofCrAnListF ([] : List 𝓕.CrAnFieldOp) = 1 := rfl
|
||||
|
||||
lemma ofCrAnListF_cons (φ : 𝓕.CrAnStates) (φs : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_cons (φ : 𝓕.CrAnFieldOp) (φs : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF (φ :: φs) = ofCrAnOpF φ * ofCrAnListF φs := rfl
|
||||
|
||||
lemma ofCrAnListF_append (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_append (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF (φs ++ φs') = ofCrAnListF φs * ofCrAnListF φs' := by
|
||||
simp [ofCrAnListF, List.map_append]
|
||||
|
||||
lemma ofCrAnListF_singleton (φ : 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_singleton (φ : 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF [φ] = ofCrAnOpF φ := by simp [ofCrAnListF]
|
||||
|
||||
/-- Maps a state to the sum of creation and annihilation operators in
|
||||
creation and annihilation free-algebra. -/
|
||||
def ofFieldOpF (φ : 𝓕.States) : FieldOpFreeAlgebra 𝓕 :=
|
||||
∑ (i : 𝓕.statesToCrAnType φ), ofCrAnOpF ⟨φ, i⟩
|
||||
def ofFieldOpF (φ : 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 :=
|
||||
∑ (i : 𝓕.fieldOpToCrAnType φ), ofCrAnOpF ⟨φ, i⟩
|
||||
|
||||
/-- Maps a list of states to the creation and annihilation free-algebra by taking
|
||||
the product of their sums of creation and annihlation operators.
|
||||
Roughly `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)` etc. -/
|
||||
def ofFieldOpListF (φs : List 𝓕.States) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
|
||||
def ofFieldOpListF (φs : List 𝓕.FieldOp) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
|
||||
|
||||
/-- Coercion from `List 𝓕.States` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
|
||||
instance : Coe (List 𝓕.States) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
|
||||
/-- Coercion from `List 𝓕.FieldOp` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
|
||||
instance : Coe (List 𝓕.FieldOp) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
|
||||
|
||||
@[simp]
|
||||
lemma ofFieldOpListF_nil : ofFieldOpListF ([] : List 𝓕.States) = 1 := rfl
|
||||
lemma ofFieldOpListF_nil : ofFieldOpListF ([] : List 𝓕.FieldOp) = 1 := rfl
|
||||
|
||||
lemma ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma ofFieldOpListF_cons (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
ofFieldOpListF (φ :: φs) = ofFieldOpF φ * ofFieldOpListF φs := rfl
|
||||
|
||||
lemma ofFieldOpListF_singleton (φ : 𝓕.States) :
|
||||
lemma ofFieldOpListF_singleton (φ : 𝓕.FieldOp) :
|
||||
ofFieldOpListF [φ] = ofFieldOpF φ := by simp [ofFieldOpListF]
|
||||
|
||||
lemma ofFieldOpListF_append (φs φs' : List 𝓕.States) :
|
||||
lemma ofFieldOpListF_append (φs φs' : List 𝓕.FieldOp) :
|
||||
ofFieldOpListF (φs ++ φs') = ofFieldOpListF φs * ofFieldOpListF φs' := by
|
||||
dsimp only [ofFieldOpListF]
|
||||
rw [List.map_append, List.prod_append]
|
||||
|
||||
lemma ofFieldOpListF_sum (φs : List 𝓕.States) :
|
||||
lemma ofFieldOpListF_sum (φs : List 𝓕.FieldOp) :
|
||||
ofFieldOpListF φs = ∑ (s : CrAnSection φs), ofCrAnListF s.1 := by
|
||||
induction φs with
|
||||
| nil => simp
|
||||
|
@ -113,60 +113,60 @@ lemma ofFieldOpListF_sum (φs : List 𝓕.States) :
|
|||
/-- The algebra map taking an element of the free-state algbra to
|
||||
the part of it in the creation and annihlation free algebra
|
||||
spanned by creation operators. -/
|
||||
def crPartF : 𝓕.States → 𝓕.FieldOpFreeAlgebra := fun φ =>
|
||||
def crPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
|
||||
match φ with
|
||||
| States.inAsymp φ => ofCrAnOpF ⟨States.inAsymp φ, ()⟩
|
||||
| States.position φ => ofCrAnOpF ⟨States.position φ, CreateAnnihilate.create⟩
|
||||
| States.outAsymp _ => 0
|
||||
| FieldOp.inAsymp φ => ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩
|
||||
| FieldOp.position φ => ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩
|
||||
| FieldOp.outAsymp _ => 0
|
||||
|
||||
@[simp]
|
||||
lemma crPartF_negAsymp (φ : 𝓕.IncomingAsymptotic) :
|
||||
crPartF (States.inAsymp φ) = ofCrAnOpF ⟨States.inAsymp φ, ()⟩ := by
|
||||
crPartF (FieldOp.inAsymp φ) = ofCrAnOpF ⟨FieldOp.inAsymp φ, ()⟩ := by
|
||||
simp [crPartF]
|
||||
|
||||
@[simp]
|
||||
lemma crPartF_position (φ : 𝓕.PositionStates) :
|
||||
crPartF (States.position φ) =
|
||||
ofCrAnOpF ⟨States.position φ, CreateAnnihilate.create⟩ := by
|
||||
lemma crPartF_position (φ : 𝓕.PositionFieldOp) :
|
||||
crPartF (FieldOp.position φ) =
|
||||
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.create⟩ := by
|
||||
simp [crPartF]
|
||||
|
||||
@[simp]
|
||||
lemma crPartF_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
|
||||
crPartF (States.outAsymp φ) = 0 := by
|
||||
crPartF (FieldOp.outAsymp φ) = 0 := by
|
||||
simp [crPartF]
|
||||
|
||||
/-- The algebra map taking an element of the free-state algbra to
|
||||
the part of it in the creation and annihilation free algebra
|
||||
spanned by annihilation operators. -/
|
||||
def anPartF : 𝓕.States → 𝓕.FieldOpFreeAlgebra := fun φ =>
|
||||
def anPartF : 𝓕.FieldOp → 𝓕.FieldOpFreeAlgebra := fun φ =>
|
||||
match φ with
|
||||
| States.inAsymp _ => 0
|
||||
| States.position φ => ofCrAnOpF ⟨States.position φ, CreateAnnihilate.annihilate⟩
|
||||
| States.outAsymp φ => ofCrAnOpF ⟨States.outAsymp φ, ()⟩
|
||||
| FieldOp.inAsymp _ => 0
|
||||
| FieldOp.position φ => ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩
|
||||
| FieldOp.outAsymp φ => ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩
|
||||
|
||||
@[simp]
|
||||
lemma anPartF_negAsymp (φ : 𝓕.IncomingAsymptotic) :
|
||||
anPartF (States.inAsymp φ) = 0 := by
|
||||
anPartF (FieldOp.inAsymp φ) = 0 := by
|
||||
simp [anPartF]
|
||||
|
||||
@[simp]
|
||||
lemma anPartF_position (φ : 𝓕.PositionStates) :
|
||||
anPartF (States.position φ) =
|
||||
ofCrAnOpF ⟨States.position φ, CreateAnnihilate.annihilate⟩ := by
|
||||
lemma anPartF_position (φ : 𝓕.PositionFieldOp) :
|
||||
anPartF (FieldOp.position φ) =
|
||||
ofCrAnOpF ⟨FieldOp.position φ, CreateAnnihilate.annihilate⟩ := by
|
||||
simp [anPartF]
|
||||
|
||||
@[simp]
|
||||
lemma anPartF_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
|
||||
anPartF (States.outAsymp φ) = ofCrAnOpF ⟨States.outAsymp φ, ()⟩ := by
|
||||
anPartF (FieldOp.outAsymp φ) = ofCrAnOpF ⟨FieldOp.outAsymp φ, ()⟩ := by
|
||||
simp [anPartF]
|
||||
|
||||
lemma ofFieldOpF_eq_crPartF_add_anPartF (φ : 𝓕.States) :
|
||||
lemma ofFieldOpF_eq_crPartF_add_anPartF (φ : 𝓕.FieldOp) :
|
||||
ofFieldOpF φ = crPartF φ + anPartF φ := by
|
||||
rw [ofFieldOpF]
|
||||
cases φ with
|
||||
| inAsymp φ => simp [statesToCrAnType]
|
||||
| position φ => simp [statesToCrAnType, CreateAnnihilate.sum_eq]
|
||||
| outAsymp φ => simp [statesToCrAnType]
|
||||
| inAsymp φ => simp [fieldOpToCrAnType]
|
||||
| position φ => simp [fieldOpToCrAnType, CreateAnnihilate.sum_eq]
|
||||
| outAsymp φ => simp [fieldOpToCrAnType]
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -174,12 +174,12 @@ lemma ofFieldOpF_eq_crPartF_add_anPartF (φ : 𝓕.States) :
|
|||
|
||||
-/
|
||||
|
||||
/-- The basis of the free creation and annihilation algebra formed by lists of CrAnStates. -/
|
||||
noncomputable def ofCrAnListFBasis : Basis (List 𝓕.CrAnStates) ℂ (FieldOpFreeAlgebra 𝓕) where
|
||||
/-- The basis of the free creation and annihilation algebra formed by lists of CrAnFieldOp. -/
|
||||
noncomputable def ofCrAnListFBasis : Basis (List 𝓕.CrAnFieldOp) ℂ (FieldOpFreeAlgebra 𝓕) where
|
||||
repr := FreeAlgebra.equivMonoidAlgebraFreeMonoid.toLinearEquiv
|
||||
|
||||
@[simp]
|
||||
lemma ofListBasis_eq_ofList (φs : List 𝓕.CrAnStates) :
|
||||
lemma ofListBasis_eq_ofList (φs : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListFBasis φs = ofCrAnListF φs := by
|
||||
simp only [ofCrAnListFBasis, FreeAlgebra.equivMonoidAlgebraFreeMonoid, MonoidAlgebra.of_apply,
|
||||
Basis.coe_ofRepr, AlgEquiv.toLinearEquiv_symm, AlgEquiv.toLinearEquiv_apply,
|
||||
|
|
|
@ -24,12 +24,12 @@ noncomputable section
|
|||
def statisticSubmodule (f : FieldStatistic) : Submodule ℂ 𝓕.FieldOpFreeAlgebra :=
|
||||
Submodule.span ℂ {a | ∃ φs, a = ofCrAnListF φs ∧ (𝓕 |>ₛ φs) = f}
|
||||
|
||||
lemma ofCrAnListF_mem_statisticSubmodule_of (φs : List 𝓕.CrAnStates) (f : FieldStatistic)
|
||||
lemma ofCrAnListF_mem_statisticSubmodule_of (φs : List 𝓕.CrAnFieldOp) (f : FieldStatistic)
|
||||
(h : (𝓕 |>ₛ φs) = f) :
|
||||
ofCrAnListF φs ∈ statisticSubmodule f := by
|
||||
refine Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩
|
||||
|
||||
lemma ofCrAnListF_bosonic_or_fermionic (φs : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_bosonic_or_fermionic (φs : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF φs ∈ statisticSubmodule bosonic ∨ ofCrAnListF φs ∈ statisticSubmodule fermionic := by
|
||||
by_cases h : (𝓕 |>ₛ φs) = bosonic
|
||||
· left
|
||||
|
@ -37,7 +37,7 @@ lemma ofCrAnListF_bosonic_or_fermionic (φs : List 𝓕.CrAnStates) :
|
|||
· right
|
||||
exact ofCrAnListF_mem_statisticSubmodule_of φs fermionic (by simpa using h)
|
||||
|
||||
lemma ofCrAnOpF_bosonic_or_fermionic (φ : 𝓕.CrAnStates) :
|
||||
lemma ofCrAnOpF_bosonic_or_fermionic (φ : 𝓕.CrAnFieldOp) :
|
||||
ofCrAnOpF φ ∈ statisticSubmodule bosonic ∨ ofCrAnOpF φ ∈ statisticSubmodule fermionic := by
|
||||
rw [← ofCrAnListF_singleton]
|
||||
exact ofCrAnListF_bosonic_or_fermionic [φ]
|
||||
|
@ -50,7 +50,7 @@ def bosonicProj : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] statisticSubmodule (𝓕 :
|
|||
else
|
||||
0
|
||||
|
||||
lemma bosonicProj_ofCrAnListF (φs : List 𝓕.CrAnStates) :
|
||||
lemma bosonicProj_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||||
bosonicProj (ofCrAnListF φs) = if h : (𝓕 |>ₛ φs) = bosonic then
|
||||
⟨ofCrAnListF φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩⟩ else 0 := by
|
||||
conv_lhs =>
|
||||
|
@ -110,13 +110,13 @@ def fermionicProj : 𝓕.FieldOpFreeAlgebra →ₗ[ℂ] statisticSubmodule (𝓕
|
|||
else
|
||||
0
|
||||
|
||||
lemma fermionicProj_ofCrAnListF (φs : List 𝓕.CrAnStates) :
|
||||
lemma fermionicProj_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||||
fermionicProj (ofCrAnListF φs) = if h : (𝓕 |>ₛ φs) = fermionic then
|
||||
⟨ofCrAnListF φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl, h⟩⟩⟩ else 0 := by
|
||||
conv_lhs =>
|
||||
rw [← ofListBasis_eq_ofList, fermionicProj, Basis.constr_basis]
|
||||
|
||||
lemma fermionicProj_ofCrAnListF_if_bosonic (φs : List 𝓕.CrAnStates) :
|
||||
lemma fermionicProj_ofCrAnListF_if_bosonic (φs : List 𝓕.CrAnFieldOp) :
|
||||
fermionicProj (ofCrAnListF φs) = if h : (𝓕 |>ₛ φs) = bosonic then
|
||||
0 else ⟨ofCrAnListF φs, Submodule.mem_span.mpr fun _ a => a ⟨φs, ⟨rfl,
|
||||
by simpa using h⟩⟩⟩ := by
|
||||
|
|
|
@ -35,7 +35,7 @@ def normTimeOrder : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕
|
|||
@[inherit_doc normTimeOrder]
|
||||
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓣𝓝ᶠ(" a ")" => normTimeOrder a
|
||||
|
||||
lemma normTimeOrder_ofCrAnListF (φs : List 𝓕.CrAnStates) :
|
||||
lemma normTimeOrder_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓣𝓝ᶠ(ofCrAnListF φs) = normTimeOrderSign φs • ofCrAnListF (normTimeOrderList φs) := by
|
||||
rw [← ofListBasis_eq_ofList]
|
||||
simp only [normTimeOrder, Basis.constr_basis]
|
||||
|
|
|
@ -12,7 +12,7 @@ import HepLean.PerturbationTheory.Koszul.KoszulSign
|
|||
|
||||
In the module
|
||||
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
|
||||
we defined the normal ordering of a list of `CrAnStates`.
|
||||
we defined the normal ordering of a list of `CrAnFieldOp`.
|
||||
In this module we extend the normal ordering to a linear map on `FieldOpFreeAlgebra`.
|
||||
|
||||
We derive properties of this normal ordering.
|
||||
|
@ -29,7 +29,7 @@ noncomputable section
|
|||
|
||||
/-- The linear map on the free creation and annihlation
|
||||
algebra defined as the map taking
|
||||
a list of CrAnStates to the normal-ordered list of states multiplied by
|
||||
a list of CrAnFieldOp to the normal-ordered list of states multiplied by
|
||||
the sign corresponding to the number of fermionic-fermionic
|
||||
exchanges done in ordering. -/
|
||||
def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :=
|
||||
|
@ -39,11 +39,11 @@ def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :
|
|||
@[inherit_doc normalOrderF]
|
||||
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓝ᶠ(" a ")" => normalOrderF a
|
||||
|
||||
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnStates) :
|
||||
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF φs) = normalOrderSign φs • ofCrAnListF (normalOrderList φs) := by
|
||||
rw [← ofListBasis_eq_ofList, normalOrderF, Basis.constr_basis]
|
||||
|
||||
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF (normalOrderList φs) = normalOrderSign φs • 𝓝ᶠ(ofCrAnListF φs) := by
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderList, smul_smul, normalOrderSign,
|
||||
Wick.koszulSign_mul_self, one_smul]
|
||||
|
@ -119,14 +119,14 @@ lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a
|
|||
|
||||
-/
|
||||
|
||||
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
|
||||
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF (φ :: φs)) = ofCrAnOpF φ * 𝓝ᶠ(ofCrAnListF φs) := by
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderSign_cons_create φ hφ,
|
||||
normalOrderList_cons_create φ hφ φs]
|
||||
rw [ofCrAnListF_cons, normalOrderF_ofCrAnListF, mul_smul_comm]
|
||||
|
||||
lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_create_mul (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(ofCrAnOpF φ * a) = ofCrAnOpF φ * 𝓝ᶠ(a) := by
|
||||
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnOpF φ)) a =
|
||||
|
@ -136,14 +136,14 @@ lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
|
|||
LinearMap.coe_comp, Function.comp_apply]
|
||||
rw [← ofCrAnListF_cons, normalOrderF_ofCrAnListF_cons_create φ hφ]
|
||||
|
||||
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
|
||||
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF (φs ++ [φ])) = 𝓝ᶠ(ofCrAnListF φs) * ofCrAnOpF φ := by
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderSign_append_annihlate φ hφ φs,
|
||||
normalOrderList_append_annihilate φ hφ φs, ofCrAnListF_append, ofCrAnListF_singleton,
|
||||
normalOrderF_ofCrAnListF, smul_mul_assoc]
|
||||
|
||||
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
|
||||
(a : FieldOpFreeAlgebra 𝓕) : 𝓝ᶠ(a * ofCrAnOpF φ) = 𝓝ᶠ(a) * ofCrAnOpF φ := by
|
||||
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnOpF φ)) a =
|
||||
|
@ -154,19 +154,19 @@ lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
|
|||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_append, ofCrAnListF_singleton,
|
||||
normalOrderF_ofCrAnListF_append_annihilate φ hφ]
|
||||
|
||||
lemma normalOrderF_crPartF_mul (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_crPartF_mul (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(crPartF φ * a) =
|
||||
crPartF φ * 𝓝ᶠ(a) := by
|
||||
match φ with
|
||||
| .inAsymp φ =>
|
||||
rw [crPartF]
|
||||
exact normalOrderF_create_mul ⟨States.inAsymp φ, ()⟩ rfl a
|
||||
exact normalOrderF_create_mul ⟨FieldOp.inAsymp φ, ()⟩ rfl a
|
||||
| .position φ =>
|
||||
rw [crPartF]
|
||||
exact normalOrderF_create_mul _ rfl _
|
||||
| .outAsymp φ => simp
|
||||
|
||||
lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_mul_anPartF (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * anPartF φ) =
|
||||
𝓝ᶠ(a) * anPartF φ := by
|
||||
match φ with
|
||||
|
@ -185,9 +185,9 @@ lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕)
|
|||
The main result of this section is `normalOrderF_superCommuteF_annihilate_create`.
|
||||
-/
|
||||
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(φs φs' : List 𝓕.CrAnStates) :
|
||||
(φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φc * ofCrAnOpF φa * ofCrAnListF φs) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φa * ofCrAnOpF φc * ofCrAnListF φs) := by
|
||||
rw [mul_assoc, mul_assoc, ← ofCrAnListF_cons, ← ofCrAnListF_cons, ← ofCrAnListF_append]
|
||||
|
@ -196,9 +196,9 @@ lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕
|
|||
rw [ofCrAnListF_append, ofCrAnListF_cons, ofCrAnListF_cons]
|
||||
noncomm_ring
|
||||
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(φs : List 𝓕.CrAnStates) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
(φs : List 𝓕.CrAnFieldOp) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa * a) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φa * ofCrAnOpF φc * a) := by
|
||||
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa)) a =
|
||||
|
@ -210,7 +210,7 @@ lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnStates)
|
|||
rw [normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF φc φa hφc hφa]
|
||||
rfl
|
||||
|
||||
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * ofCrAnOpF φc * ofCrAnOpF φa * b) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
|
@ -225,7 +225,7 @@ lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
|||
normalOrderF_swap_create_annihlate_ofCrAnListF φc φa hφc hφa]
|
||||
rfl
|
||||
|
||||
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * [ofCrAnOpF φc, ofCrAnOpF φa]ₛca * b) = 0 := by
|
||||
|
@ -234,7 +234,7 @@ lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
|
|||
normalOrderF_swap_create_annihlate φc φa hφc hφa]
|
||||
simp
|
||||
|
||||
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φc]ₛca * b) = 0 := by
|
||||
|
@ -243,7 +243,7 @@ lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
|
|||
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
||||
exact Or.inr (normalOrderF_superCommuteF_create_annihilate φc φa hφc hφa ..)
|
||||
|
||||
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * (crPartF φ) * (anPartF φ') * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
𝓝ᶠ(a * (anPartF φ') * (crPartF φ) * b) := by
|
||||
|
@ -253,22 +253,22 @@ lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFre
|
|||
| .position φ, .position φ' =>
|
||||
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
| .inAsymp φ, .outAsymp φ' =>
|
||||
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
| .inAsymp φ, .position φ' =>
|
||||
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
| .position φ, .outAsymp φ' =>
|
||||
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
|
||||
/-!
|
||||
|
@ -279,13 +279,13 @@ Using the results from above.
|
|||
|
||||
-/
|
||||
|
||||
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * (anPartF φ) * (crPartF φ') * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝ᶠ(a * (crPartF φ') *
|
||||
(anPartF φ) * b) := by
|
||||
simp [normalOrderF_swap_crPartF_anPartF, smul_smul]
|
||||
|
||||
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommuteF
|
||||
(crPartF φ) (anPartF φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
|
@ -304,7 +304,7 @@ lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : F
|
|||
rw [crPartF_position, anPartF_posAsymp]
|
||||
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||||
|
||||
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommuteF
|
||||
(anPartF φ) (crPartF φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
|
@ -330,7 +330,7 @@ lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : F
|
|||
-/
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(crPartF φ * crPartF φ') =
|
||||
crPartF φ * crPartF φ' := by
|
||||
rw [normalOrderF_crPartF_mul]
|
||||
|
@ -339,7 +339,7 @@ lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(anPartF φ * anPartF φ') =
|
||||
anPartF φ * anPartF φ' := by
|
||||
rw [normalOrderF_mul_anPartF]
|
||||
|
@ -348,7 +348,7 @@ lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(crPartF φ * anPartF φ') =
|
||||
crPartF φ * anPartF φ' := by
|
||||
rw [normalOrderF_crPartF_mul]
|
||||
|
@ -357,7 +357,7 @@ lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(anPartF φ * crPartF φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPartF φ' * anPartF φ) := by
|
||||
|
@ -367,7 +367,7 @@ lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
|||
rw [← mul_assoc, normalOrderF_swap_anPartF_crPartF]
|
||||
simp
|
||||
|
||||
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(ofFieldOpF φ * ofFieldOpF φ') =
|
||||
crPartF φ * crPartF φ' +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
|
@ -388,8 +388,8 @@ lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
|
|||
TODO "Split the following two lemmas up into smaller parts."
|
||||
|
||||
lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
||||
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
|
||||
(φc φc' : 𝓕.CrAnFieldOp) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
(𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca * ofCrAnListF φs')) =
|
||||
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
||||
(ofCrAnListF (createFilter φs) * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca *
|
||||
|
@ -447,10 +447,10 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
|||
rw [ofCrAnListF_append, ofCrAnListF_singleton, ofCrAnListF_singleton, smul_mul_assoc]
|
||||
|
||||
lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
||||
(φa φa' : 𝓕.CrAnStates)
|
||||
(φa φa' : 𝓕.CrAnFieldOp)
|
||||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
|
||||
(φs φs' : List 𝓕.CrAnStates) :
|
||||
(φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * ofCrAnListF φs') =
|
||||
normalOrderSign (φs ++ φa' :: φa :: φs') •
|
||||
(ofCrAnListF (createFilter (φs ++ φs'))
|
||||
|
@ -520,15 +520,15 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs, 𝓝ᶠ(ofCrAnListF φs')]ₛca =
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofCrAnListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs := by
|
||||
simp [normalOrderF_ofCrAnListF, map_smul, superCommuteF_ofCrAnListF_ofCrAnListF, ofCrAnListF_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs := by
|
||||
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
|
@ -544,21 +544,21 @@ lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrA
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) :
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs
|
||||
+ [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF]
|
||||
|
||||
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnOpF φ
|
||||
+ [ofCrAnOpF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [← ofCrAnListF_singleton, ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||||
|
||||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.FieldOp)
|
||||
(φs' : List 𝓕.FieldOp) :
|
||||
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
|
||||
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
|
|
|
@ -42,13 +42,13 @@ scoped[FieldSpecification.FieldOpFreeAlgebra] notation "[" φs "," φs' "]ₛca"
|
|||
|
||||
-/
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs, ofCrAnListF φs']ₛca =
|
||||
ofCrAnListF (φs ++ φs') - 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF (φs' ++ φs) := by
|
||||
rw [← ofListBasis_eq_ofList, ← ofListBasis_eq_ofList]
|
||||
simp only [superCommuteF, Basis.constr_basis]
|
||||
|
||||
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF (φ φ' : 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF (φ φ' : 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca =
|
||||
ofCrAnOpF φ * ofCrAnOpF φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofCrAnOpF φ' * ofCrAnOpF φ := by
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
|
||||
|
@ -57,7 +57,7 @@ lemma superCommuteF_ofCrAnOpF_ofCrAnOpF (φ φ' : 𝓕.CrAnStates) :
|
|||
rw [ofCrAnListF_append]
|
||||
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpFsList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpFsList (φcas : List 𝓕.CrAnFieldOp) (φs : List 𝓕.FieldOp) :
|
||||
[ofCrAnListF φcas, ofFieldOpListF φs]ₛca = ofCrAnListF φcas * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofCrAnListF φcas := by
|
||||
conv_lhs => rw [ofFieldOpListF_sum]
|
||||
|
@ -70,7 +70,7 @@ lemma superCommuteF_ofCrAnListF_ofFieldOpFsList (φcas : List 𝓕.CrAnStates) (
|
|||
← Finset.sum_mul, ← ofFieldOpListF_sum]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpFsList (φ : List 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpFsList (φ : List 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
[ofFieldOpListF φ, ofFieldOpListF φs]ₛca = ofFieldOpListF φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpListF φ := by
|
||||
conv_lhs => rw [ofFieldOpListF_sum]
|
||||
|
@ -83,165 +83,165 @@ lemma superCommuteF_ofFieldOpListF_ofFieldOpFsList (φ : List 𝓕.States) (φs
|
|||
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
|
||||
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofFieldOpListF_sum]
|
||||
|
||||
lemma superCommuteF_ofFieldOpF_ofFieldOpFsList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_ofFieldOpF_ofFieldOpFsList (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
[ofFieldOpF φ, ofFieldOpListF φs]ₛca = ofFieldOpF φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpF φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList, ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpF (φs : List 𝓕.FieldOp) (φ : 𝓕.FieldOp) :
|
||||
[ofFieldOpListF φs, ofFieldOpF φ]ₛca = ofFieldOpListF φs * ofFieldOpF φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList, ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
|
||||
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
[anPartF φ, crPartF φ']ₛca = anPartF φ * crPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * anPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.inAsymp φ, _ =>
|
||||
| FieldOp.inAsymp φ, _ =>
|
||||
simp
|
||||
| _, States.outAsymp φ =>
|
||||
| _, FieldOp.outAsymp φ =>
|
||||
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
| FieldOp.position φ, FieldOp.position φ' =>
|
||||
simp only [anPartF_position, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.outAsymp φ, States.position φ' =>
|
||||
| FieldOp.outAsymp φ, FieldOp.position φ' =>
|
||||
simp only [anPartF_posAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.position φ, States.inAsymp φ' =>
|
||||
| FieldOp.position φ, FieldOp.inAsymp φ' =>
|
||||
simp only [anPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, crAnStatistics,
|
||||
FieldStatistic.ofList_singleton, Function.comp_apply, crAnStatesToStates_prod, ←
|
||||
FieldStatistic.ofList_singleton, Function.comp_apply, crAnFieldOpToFieldOp_prod, ←
|
||||
ofCrAnListF_append]
|
||||
| States.outAsymp φ, States.inAsymp φ' =>
|
||||
| FieldOp.outAsymp φ, FieldOp.inAsymp φ' =>
|
||||
simp only [anPartF_posAsymp, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
|
||||
lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) :
|
||||
lemma superCommuteF_crPartF_anPartF (φ φ' : 𝓕.FieldOp) :
|
||||
[crPartF φ, anPartF φ']ₛca = crPartF φ * anPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.outAsymp φ, _ =>
|
||||
| FieldOp.outAsymp φ, _ =>
|
||||
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
mul_zero, sub_self]
|
||||
| _, States.inAsymp φ =>
|
||||
| _, FieldOp.inAsymp φ =>
|
||||
simp only [anPartF_negAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
| FieldOp.position φ, FieldOp.position φ' =>
|
||||
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.position φ, States.outAsymp φ' =>
|
||||
| FieldOp.position φ, FieldOp.outAsymp φ' =>
|
||||
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.inAsymp φ, States.position φ' =>
|
||||
| FieldOp.inAsymp φ, FieldOp.position φ' =>
|
||||
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.inAsymp φ, States.outAsymp φ' =>
|
||||
| FieldOp.inAsymp φ, FieldOp.outAsymp φ' =>
|
||||
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
|
||||
lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.States) :
|
||||
lemma superCommuteF_crPartF_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
[crPartF φ, crPartF φ']ₛca = crPartF φ * crPartF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.outAsymp φ, _ =>
|
||||
| FieldOp.outAsymp φ, _ =>
|
||||
simp only [crPartF_posAsymp, map_zero, LinearMap.zero_apply, zero_mul, instCommGroup.eq_1,
|
||||
mul_zero, sub_self]
|
||||
| _, States.outAsymp φ =>
|
||||
| _, FieldOp.outAsymp φ =>
|
||||
simp only [crPartF_posAsymp, map_zero, mul_zero, instCommGroup.eq_1, smul_zero, zero_mul,
|
||||
sub_self]
|
||||
| States.position φ, States.position φ' =>
|
||||
| FieldOp.position φ, FieldOp.position φ' =>
|
||||
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.position φ, States.inAsymp φ' =>
|
||||
| FieldOp.position φ, FieldOp.inAsymp φ' =>
|
||||
simp only [crPartF_position, crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.inAsymp φ, States.position φ' =>
|
||||
| FieldOp.inAsymp φ, FieldOp.position φ' =>
|
||||
simp only [crPartF_negAsymp, crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.inAsymp φ, States.inAsymp φ' =>
|
||||
| FieldOp.inAsymp φ, FieldOp.inAsymp φ' =>
|
||||
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
|
||||
lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.States) :
|
||||
lemma superCommuteF_anPartF_anPartF (φ φ' : 𝓕.FieldOp) :
|
||||
[anPartF φ, anPartF φ']ₛca =
|
||||
anPartF φ * anPartF φ' - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ := by
|
||||
match φ, φ' with
|
||||
| States.inAsymp φ, _ =>
|
||||
| FieldOp.inAsymp φ, _ =>
|
||||
simp
|
||||
| _, States.inAsymp φ =>
|
||||
| _, FieldOp.inAsymp φ =>
|
||||
simp
|
||||
| States.position φ, States.position φ' =>
|
||||
| FieldOp.position φ, FieldOp.position φ' =>
|
||||
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.position φ, States.outAsymp φ' =>
|
||||
| FieldOp.position φ, FieldOp.outAsymp φ' =>
|
||||
simp only [anPartF_position, anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.outAsymp φ, States.position φ' =>
|
||||
| FieldOp.outAsymp φ, FieldOp.position φ' =>
|
||||
simp only [anPartF_posAsymp, anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
| States.outAsymp φ, States.outAsymp φ' =>
|
||||
| FieldOp.outAsymp φ, FieldOp.outAsymp φ' =>
|
||||
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [crAnStatistics, ← ofCrAnListF_append]
|
||||
|
||||
lemma superCommuteF_crPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_crPartF_ofFieldOpListF (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
[crPartF φ, ofFieldOpListF φs]ₛca =
|
||||
crPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs *
|
||||
crPartF φ := by
|
||||
match φ with
|
||||
| States.inAsymp φ =>
|
||||
| FieldOp.inAsymp φ =>
|
||||
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
| States.position φ =>
|
||||
| FieldOp.position φ =>
|
||||
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
| States.outAsymp φ =>
|
||||
| FieldOp.outAsymp φ =>
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_anPartF_ofFieldOpListF (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
[anPartF φ, ofFieldOpListF φs]ₛca =
|
||||
anPartF φ * ofFieldOpListF φs - 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) •
|
||||
ofFieldOpListF φs * anPartF φ := by
|
||||
match φ with
|
||||
| States.inAsymp φ =>
|
||||
| FieldOp.inAsymp φ =>
|
||||
simp
|
||||
| States.position φ =>
|
||||
| FieldOp.position φ =>
|
||||
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
| States.outAsymp φ =>
|
||||
| FieldOp.outAsymp φ =>
|
||||
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnListF_singleton, superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
|
||||
lemma superCommuteF_crPartF_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
lemma superCommuteF_crPartF_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
||||
[crPartF φ, ofFieldOpF φ']ₛca =
|
||||
crPartF φ * ofFieldOpF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOpF φ' * crPartF φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_crPartF_ofFieldOpListF]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
lemma superCommuteF_anPartF_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
||||
[anPartF φ, ofFieldOpF φ']ₛca =
|
||||
anPartF φ * ofFieldOpF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOpF φ' * anPartF φ := by
|
||||
|
@ -256,44 +256,44 @@ Lemmas which rewrite a multiplication of two elements of the algebra as their co
|
|||
multiplication with a sign plus the super commutor.
|
||||
|
||||
-/
|
||||
lemma ofCrAnListF_mul_ofCrAnListF_eq_superCommuteF (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_mul_ofCrAnListF_eq_superCommuteF (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF φs * ofCrAnListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofCrAnListF φs' * ofCrAnListF φs
|
||||
+ [ofCrAnListF φs, ofCrAnListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF]
|
||||
simp [ofCrAnListF_append]
|
||||
|
||||
lemma ofCrAnOpF_mul_ofCrAnListF_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnOpF_mul_ofCrAnListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp) (φs' : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnOpF φ * ofCrAnListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofCrAnListF φs' * ofCrAnOpF φ
|
||||
+ [ofCrAnOpF φ, ofCrAnListF φs']ₛca := by
|
||||
rw [← ofCrAnListF_singleton, ofCrAnListF_mul_ofCrAnListF_eq_superCommuteF]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.States) :
|
||||
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.FieldOp) :
|
||||
ofFieldOpListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofFieldOpFsList]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpF_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
|
||||
lemma ofFieldOpF_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.FieldOp) (φs' : List 𝓕.FieldOp) :
|
||||
ofFieldOpF φ * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpF φ
|
||||
+ [ofFieldOpF φ, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofFieldOpF_ofFieldOpFsList]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpListF_mul_ofFieldOpF_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
lemma ofFieldOpListF_mul_ofFieldOpF_eq_superCommuteF (φs : List 𝓕.FieldOp) (φ : 𝓕.FieldOp) :
|
||||
ofFieldOpListF φs * ofFieldOpF φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofFieldOpF φ]ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofFieldOpF]
|
||||
simp
|
||||
|
||||
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
||||
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
|
||||
crPartF φ * anPartF φ' =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * crPartF φ +
|
||||
[crPartF φ, anPartF φ']ₛca := by
|
||||
rw [superCommuteF_crPartF_anPartF]
|
||||
simp
|
||||
|
||||
lemma anPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
||||
lemma anPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
|
||||
anPartF φ * crPartF φ' =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
crPartF φ' * anPartF φ +
|
||||
|
@ -301,20 +301,20 @@ lemma anPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|||
rw [superCommuteF_anPartF_crPartF]
|
||||
simp
|
||||
|
||||
lemma crPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
||||
lemma crPartF_mul_crPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
|
||||
crPartF φ * crPartF φ' =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • crPartF φ' * crPartF φ +
|
||||
[crPartF φ, crPartF φ']ₛca := by
|
||||
rw [superCommuteF_crPartF_crPartF]
|
||||
simp
|
||||
|
||||
lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
||||
lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.FieldOp) :
|
||||
anPartF φ * anPartF φ' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • anPartF φ' * anPartF φ +
|
||||
[anPartF φ, anPartF φ']ₛca := by
|
||||
rw [superCommuteF_anPartF_anPartF]
|
||||
simp
|
||||
|
||||
lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
||||
lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp) (φs' : List 𝓕.FieldOp) :
|
||||
ofCrAnListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnListF φs
|
||||
+ [ofCrAnListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
|
@ -326,7 +326,7 @@ lemma ofCrAnListF_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnState
|
|||
|
||||
-/
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_symm (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_symm (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs, ofCrAnListF φs']ₛca =
|
||||
(- 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs')) • [ofCrAnListF φs', ofCrAnListF φs]ₛca := by
|
||||
rw [superCommuteF_ofCrAnListF_ofCrAnListF, superCommuteF_ofCrAnListF_ofCrAnListF, smul_sub]
|
||||
|
@ -338,7 +338,7 @@ lemma superCommuteF_ofCrAnListF_ofCrAnListF_symm (φs φs' : List 𝓕.CrAnState
|
|||
simp only [one_smul]
|
||||
abel
|
||||
|
||||
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_symm (φ φ' : 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_symm (φ φ' : 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca =
|
||||
(- 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ')) • [ofCrAnOpF φ', ofCrAnOpF φ]ₛca := by
|
||||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF, superCommuteF_ofCrAnOpF_ofCrAnOpF]
|
||||
|
@ -357,7 +357,7 @@ lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_symm (φ φ' : 𝓕.CrAnStates) :
|
|||
|
||||
-/
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_cons (φ : 𝓕.CrAnStates) (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_cons (φ : 𝓕.CrAnFieldOp) (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs, ofCrAnListF (φ :: φs')]ₛca =
|
||||
[ofCrAnListF φs, ofCrAnOpF φ]ₛca * ofCrAnListF φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ)
|
||||
|
@ -377,8 +377,8 @@ lemma superCommuteF_ofCrAnListF_ofCrAnListF_cons (φ : 𝓕.CrAnStates) (φs φs
|
|||
rw [← ofCrAnListF_cons, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
simp only [instCommGroup, map_mul, mul_comm]
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnListF φs, ofFieldOpListF (φ :: φs')]ₛca =
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_cons (φ : 𝓕.FieldOp) (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, ofFieldOpListF (φ :: φs')]ₛca =
|
||||
[ofCrAnListF φs, ofFieldOpF φ]ₛca * ofFieldOpListF φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * [ofCrAnListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnListF_ofFieldOpFsList]
|
||||
|
@ -402,8 +402,8 @@ Within the creation and annihilation algebra, we have that
|
|||
`[φᶜᵃs, φᶜᵃ₀ … φᶜᵃₙ]ₛca = ∑ i, sᵢ • φᶜᵃs₀ … φᶜᵃᵢ₋₁ * [φᶜᵃs, φᶜᵃᵢ]ₛca * φᶜᵃᵢ₊₁ … φᶜᵃₙ`
|
||||
where `sᵢ` is the exchange sign for `φᶜᵃs` and `φᶜᵃs₀ … φᶜᵃᵢ₋₁`.
|
||||
-/
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum (φs : List 𝓕.CrAnStates) :
|
||||
(φs' : List 𝓕.CrAnStates) → [ofCrAnListF φs, ofCrAnListF φs']ₛca =
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum (φs : List 𝓕.CrAnFieldOp) :
|
||||
(φs' : List 𝓕.CrAnFieldOp) → [ofCrAnListF φs, ofCrAnListF φs']ₛca =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofCrAnListF (φs'.take n) * [ofCrAnListF φs, ofCrAnOpF (φs'.get n)]ₛca *
|
||||
ofCrAnListF (φs'.drop (n + 1))
|
||||
|
@ -417,7 +417,7 @@ lemma superCommuteF_ofCrAnListF_ofCrAnListF_eq_sum (φs : List 𝓕.CrAnStates)
|
|||
· simp [Finset.mul_sum, smul_smul, ofCrAnListF_cons, mul_assoc,
|
||||
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
|
||||
lemma superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnFieldOp) : (φs' : List 𝓕.FieldOp) →
|
||||
[ofCrAnListF φs, ofFieldOpListF φs']ₛca =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofFieldOpListF (φs'.take n) * [ofCrAnListF φs, ofFieldOpF (φs'.get n)]ₛca *
|
||||
|
@ -436,7 +436,7 @@ lemma superCommuteF_ofCrAnListF_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnState
|
|||
· simp [Finset.mul_sum, smul_smul, ofFieldOpListF_cons, mul_assoc,
|
||||
FieldStatistic.ofList_cons_eq_mul, mul_comm]
|
||||
|
||||
lemma summerCommute_jacobi_ofCrAnListF (φs1 φs2 φs3 : List 𝓕.CrAnStates) :
|
||||
lemma summerCommute_jacobi_ofCrAnListF (φs1 φs2 φs3 : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs1, [ofCrAnListF φs2, ofCrAnListF φs3]ₛca]ₛca =
|
||||
𝓢(𝓕 |>ₛ φs1, 𝓕 |>ₛ φs3) •
|
||||
(- 𝓢(𝓕 |>ₛ φs2, 𝓕 |>ₛ φs3) • [ofCrAnListF φs3, [ofCrAnListF φs1, ofCrAnListF φs2]ₛca]ₛca -
|
||||
|
@ -706,7 +706,7 @@ lemma superCommuteF_expand_bosonicProj_fermionicProj (a b : 𝓕.FieldOpFreeAlge
|
|||
superCommuteF_fermionic_fermionic (by simp) (by simp)]
|
||||
abel
|
||||
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs, ofCrAnListF φs']ₛca ∈ statisticSubmodule bosonic ∨
|
||||
[ofCrAnListF φs, ofCrAnListF φs']ₛca ∈ statisticSubmodule fermionic := by
|
||||
by_cases h1 : (𝓕 |>ₛ φs) = bosonic <;> by_cases h2 : (𝓕 |>ₛ φs') = bosonic
|
||||
|
@ -743,13 +743,13 @@ lemma superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic (φs φs' : Lis
|
|||
apply ofCrAnListF_mem_statisticSubmodule_of _ _ (by simpa using h1)
|
||||
apply ofCrAnListF_mem_statisticSubmodule_of _ _ (by simpa using h2)
|
||||
|
||||
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic (φ φ' : 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic (φ φ' : 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca ∈ statisticSubmodule bosonic ∨
|
||||
[ofCrAnOpF φ, ofCrAnOpF φ']ₛca ∈ statisticSubmodule fermionic := by
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
|
||||
exact superCommuteF_ofCrAnListF_ofCrAnListF_bosonic_or_fermionic [φ] [φ']
|
||||
|
||||
lemma superCommuteF_superCommuteF_ofCrAnOpF_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnStates) :
|
||||
lemma superCommuteF_superCommuteF_ofCrAnOpF_bosonic_or_fermionic (φ1 φ2 φ3 : 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca ∈ statisticSubmodule bosonic ∨
|
||||
[ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca ∈ statisticSubmodule fermionic := by
|
||||
rcases superCommuteF_ofCrAnOpF_ofCrAnOpF_bosonic_or_fermionic φ2 φ3 with hs | hs
|
||||
|
@ -779,7 +779,7 @@ lemma superCommuteF_superCommuteF_ofCrAnOpF_bosonic_or_fermionic (φ1 φ2 φ3 :
|
|||
rw [h]
|
||||
apply superCommuteF_grade h1 hs
|
||||
|
||||
lemma superCommuteF_bosonic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnStates)
|
||||
lemma superCommuteF_bosonic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnFieldOp)
|
||||
(ha : a ∈ statisticSubmodule bosonic) :
|
||||
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length),
|
||||
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
|
||||
|
@ -808,7 +808,7 @@ lemma superCommuteF_bosonic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φ
|
|||
simp_all [p, Finset.smul_sum]
|
||||
· exact ha
|
||||
|
||||
lemma superCommuteF_fermionic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnStates)
|
||||
lemma superCommuteF_fermionic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (φs : List 𝓕.CrAnFieldOp)
|
||||
(ha : a ∈ statisticSubmodule fermionic) :
|
||||
[a, ofCrAnListF φs]ₛca = ∑ (n : Fin φs.length), 𝓢(fermionic, 𝓕 |>ₛ φs.take n) •
|
||||
ofCrAnListF (φs.take n) * [a, ofCrAnOpF (φs.get n)]ₛca *
|
||||
|
@ -842,7 +842,7 @@ lemma superCommuteF_fermionic_ofCrAnListF_eq_sum (a : 𝓕.FieldOpFreeAlgebra) (
|
|||
simp [smul_smul, mul_comm]
|
||||
· exact ha
|
||||
|
||||
lemma statistic_neq_of_superCommuteF_fermionic {φs φs' : List 𝓕.CrAnStates}
|
||||
lemma statistic_neq_of_superCommuteF_fermionic {φs φs' : List 𝓕.CrAnFieldOp}
|
||||
(h : [ofCrAnListF φs, ofCrAnListF φs']ₛca ∈ statisticSubmodule fermionic) :
|
||||
(𝓕 |>ₛ φs) ≠ (𝓕 |>ₛ φs') ∨ [ofCrAnListF φs, ofCrAnListF φs']ₛca = 0 := by
|
||||
by_cases h0 : [ofCrAnListF φs, ofCrAnListF φs']ₛca = 0
|
||||
|
|
|
@ -34,7 +34,7 @@ def timeOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :=
|
|||
@[inherit_doc timeOrderF]
|
||||
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓣ᶠ(" a ")" => timeOrderF a
|
||||
|
||||
lemma timeOrderF_ofCrAnListF (φs : List 𝓕.CrAnStates) :
|
||||
lemma timeOrderF_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓣ᶠ(ofCrAnListF φs) = crAnTimeOrderSign φs • ofCrAnListF (crAnTimeOrderList φs) := by
|
||||
rw [← ofListBasis_eq_ofList]
|
||||
simp only [timeOrderF, Basis.constr_basis]
|
||||
|
@ -99,7 +99,7 @@ lemma timeOrderF_timeOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓣ᶠ(a * b
|
|||
· rw [timeOrderF_timeOrderF_mid]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_ofFieldOpListF (φs : List 𝓕.States) :
|
||||
lemma timeOrderF_ofFieldOpListF (φs : List 𝓕.FieldOp) :
|
||||
𝓣ᶠ(ofFieldOpListF φs) = timeOrderSign φs • ofFieldOpListF (timeOrderList φs) := by
|
||||
conv_lhs =>
|
||||
rw [ofFieldOpListF_sum, map_sum]
|
||||
|
@ -116,10 +116,10 @@ lemma timeOrderF_ofFieldOpListF_nil : timeOrderF (𝓕 := 𝓕) (ofFieldOpListF
|
|||
simp [timeOrderSign, Wick.koszulSign, timeOrderList]
|
||||
|
||||
@[simp]
|
||||
lemma timeOrderF_ofFieldOpListF_singleton (φ : 𝓕.States) : 𝓣ᶠ(ofFieldOpListF [φ]) = ofFieldOpListF [φ] := by
|
||||
lemma timeOrderF_ofFieldOpListF_singleton (φ : 𝓕.FieldOp) : 𝓣ᶠ(ofFieldOpListF [φ]) = ofFieldOpListF [φ] := by
|
||||
simp [timeOrderF_ofFieldOpListF, timeOrderSign, timeOrderList]
|
||||
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_ordered {φ ψ : 𝓕.FieldOp} (h : timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofFieldOpF φ * ofFieldOpF ψ) = ofFieldOpF φ * ofFieldOpF ψ := by
|
||||
rw [← ofFieldOpListF_singleton, ← ofFieldOpListF_singleton, ← ofFieldOpListF_append,
|
||||
timeOrderF_ofFieldOpListF]
|
||||
|
@ -127,7 +127,7 @@ lemma timeOrderF_ofFieldOpF_ofFieldOpF_ordered {φ ψ : 𝓕.States} (h : timeOr
|
|||
rw [timeOrderSign_pair_ordered h, timeOrderList_pair_ordered h]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered {φ ψ : 𝓕.FieldOp} (h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofFieldOpF φ * ofFieldOpF ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofFieldOpF ψ * ofFieldOpF φ := by
|
||||
rw [← ofFieldOpListF_singleton, ← ofFieldOpListF_singleton,
|
||||
← ofFieldOpListF_append, timeOrderF_ofFieldOpListF]
|
||||
|
@ -135,7 +135,7 @@ lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered {φ ψ : 𝓕.States} (h : ¬
|
|||
rw [timeOrderSign_pair_not_ordered h, timeOrderList_pair_not_ordered h]
|
||||
simp [← ofFieldOpListF_append]
|
||||
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered_eq_timeOrderF {φ ψ : 𝓕.States}
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered_eq_timeOrderF {φ ψ : 𝓕.FieldOp}
|
||||
(h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofFieldOpF φ * ofFieldOpF ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣ᶠ(ofFieldOpF ψ * ofFieldOpF φ) := by
|
||||
rw [timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered h]
|
||||
|
@ -145,7 +145,7 @@ lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered_eq_timeOrderF {φ ψ : 𝓕.S
|
|||
simp_all
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) :
|
||||
{φ ψ : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ ψ) :
|
||||
𝓣ᶠ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca) = 0 := by
|
||||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF]
|
||||
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, map_sub, map_smul]
|
||||
|
@ -163,28 +163,28 @@ lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel
|
|||
simp_all
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel_right
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
{φ ψ : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ ψ) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca) = 0 := by
|
||||
rw [timeOrderF_timeOrderF_right,
|
||||
timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel h]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel_left
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
{φ ψ : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ ψ) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓣ᶠ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * a) = 0 := by
|
||||
rw [timeOrderF_timeOrderF_left,
|
||||
timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel h]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel_mid
|
||||
{φ ψ : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ ψ) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
{φ ψ : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ ψ) (a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓣ᶠ(a * [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca * b) = 0 := by
|
||||
rw [timeOrderF_timeOrderF_mid,
|
||||
timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_not_crAnTimeOrderRel h]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_superCommuteF_superCommuteF_ofCrAnOpF_not_crAnTimeOrderRel
|
||||
{φ1 φ2 : 𝓕.CrAnStates} (h : ¬ crAnTimeOrderRel φ1 φ2) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
{φ1 φ2 : 𝓕.CrAnFieldOp} (h : ¬ crAnTimeOrderRel φ1 φ2) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓣ᶠ([a, [ofCrAnOpF φ1, ofCrAnOpF φ2]ₛca]ₛca) = 0 := by
|
||||
rw [← bosonicProj_add_fermionicProj a]
|
||||
simp only [map_add, LinearMap.add_apply]
|
||||
|
@ -207,7 +207,7 @@ lemma timeOrderF_superCommuteF_superCommuteF_ofCrAnOpF_not_crAnTimeOrderRel
|
|||
simp
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_not_crAnTimeOrderRel
|
||||
{φ1 φ2 φ3 : 𝓕.CrAnStates} (h12 : ¬ crAnTimeOrderRel φ1 φ2)
|
||||
{φ1 φ2 φ3 : 𝓕.CrAnFieldOp} (h12 : ¬ crAnTimeOrderRel φ1 φ2)
|
||||
(h13 : ¬ crAnTimeOrderRel φ1 φ3) :
|
||||
𝓣ᶠ([ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca) = 0 := by
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
|
||||
|
@ -223,7 +223,7 @@ lemma timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_not_crAnTimeOrderRel
|
|||
simp
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_not_crAnTimeOrderRel'
|
||||
{φ1 φ2 φ3 : 𝓕.CrAnStates} (h12 : ¬ crAnTimeOrderRel φ2 φ1)
|
||||
{φ1 φ2 φ3 : 𝓕.CrAnFieldOp} (h12 : ¬ crAnTimeOrderRel φ2 φ1)
|
||||
(h13 : ¬ crAnTimeOrderRel φ3 φ1) :
|
||||
𝓣ᶠ([ofCrAnOpF φ1, [ofCrAnOpF φ2, ofCrAnOpF φ3]ₛca]ₛca) = 0 := by
|
||||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_singleton, ← ofCrAnListF_singleton]
|
||||
|
@ -239,7 +239,7 @@ lemma timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_not_crAnTimeOrderRel'
|
|||
simp
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_all_not_crAnTimeOrderRel
|
||||
(φ1 φ2 φ3 : 𝓕.CrAnStates) (h : ¬
|
||||
(φ1 φ2 φ3 : 𝓕.CrAnFieldOp) (h : ¬
|
||||
(crAnTimeOrderRel φ1 φ2 ∧ crAnTimeOrderRel φ1 φ3 ∧
|
||||
crAnTimeOrderRel φ2 φ1 ∧ crAnTimeOrderRel φ2 φ3 ∧
|
||||
crAnTimeOrderRel φ3 φ1 ∧ crAnTimeOrderRel φ3 φ2)) :
|
||||
|
@ -277,7 +277,7 @@ lemma timeOrderF_superCommuteF_ofCrAnOpF_superCommuteF_all_not_crAnTimeOrderRel
|
|||
exact IsTrans.trans φ3 φ2 φ1 h32 h21
|
||||
|
||||
lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_eq_time
|
||||
{φ ψ : 𝓕.CrAnStates} (h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) :
|
||||
{φ ψ : 𝓕.CrAnFieldOp} (h1 : crAnTimeOrderRel φ ψ) (h2 : crAnTimeOrderRel ψ φ) :
|
||||
𝓣ᶠ([ofCrAnOpF φ, ofCrAnOpF ψ]ₛca) = [ofCrAnOpF φ, ofCrAnOpF ψ]ₛca := by
|
||||
rw [superCommuteF_ofCrAnOpF_ofCrAnOpF]
|
||||
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc, map_sub, map_smul]
|
||||
|
@ -297,7 +297,7 @@ lemma timeOrderF_superCommuteF_ofCrAnOpF_ofCrAnOpF_eq_time
|
|||
/-- In the state algebra time, ordering obeys `T(φ₀φ₁…φₙ) = s * φᵢ * T(φ₀φ₁…φᵢ₋₁φᵢ₊₁…φₙ)`
|
||||
where `φᵢ` is the state
|
||||
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`. -/
|
||||
lemma timeOrderF_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma timeOrderF_eq_maxTimeField_mul (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
𝓣ᶠ(ofFieldOpListF (φ :: φs)) =
|
||||
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) •
|
||||
ofFieldOpF (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
|
@ -312,7 +312,7 @@ lemma timeOrderF_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
where `φᵢ` is the state
|
||||
which has maximum time and `s` is the exchange sign of `φᵢ` and `φ₀φ₁…φᵢ₋₁`.
|
||||
Here `s` is written using finite sets. -/
|
||||
lemma timeOrderF_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma timeOrderF_eq_maxTimeField_mul_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) :
|
||||
𝓣ᶠ(ofFieldOpListF (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
(Finset.filter (fun x =>
|
||||
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue