refactor: Rename States to FieldOps
This commit is contained in:
parent
171e80fc04
commit
8f41de5785
36 changed files with 946 additions and 946 deletions
|
@ -12,7 +12,7 @@ import HepLean.PerturbationTheory.Koszul.KoszulSign
|
|||
|
||||
In the module
|
||||
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
|
||||
we defined the normal ordering of a list of `CrAnStates`.
|
||||
we defined the normal ordering of a list of `CrAnFieldOp`.
|
||||
In this module we extend the normal ordering to a linear map on `FieldOpFreeAlgebra`.
|
||||
|
||||
We derive properties of this normal ordering.
|
||||
|
@ -29,7 +29,7 @@ noncomputable section
|
|||
|
||||
/-- The linear map on the free creation and annihlation
|
||||
algebra defined as the map taking
|
||||
a list of CrAnStates to the normal-ordered list of states multiplied by
|
||||
a list of CrAnFieldOp to the normal-ordered list of states multiplied by
|
||||
the sign corresponding to the number of fermionic-fermionic
|
||||
exchanges done in ordering. -/
|
||||
def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :=
|
||||
|
@ -39,11 +39,11 @@ def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[ℂ] FieldOpFreeAlgebra 𝓕 :
|
|||
@[inherit_doc normalOrderF]
|
||||
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓝ᶠ(" a ")" => normalOrderF a
|
||||
|
||||
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnStates) :
|
||||
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF φs) = normalOrderSign φs • ofCrAnListF (normalOrderList φs) := by
|
||||
rw [← ofListBasis_eq_ofList, normalOrderF, Basis.constr_basis]
|
||||
|
||||
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnFieldOp) :
|
||||
ofCrAnListF (normalOrderList φs) = normalOrderSign φs • 𝓝ᶠ(ofCrAnListF φs) := by
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderList, smul_smul, normalOrderSign,
|
||||
Wick.koszulSign_mul_self, one_smul]
|
||||
|
@ -119,14 +119,14 @@ lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a
|
|||
|
||||
-/
|
||||
|
||||
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
|
||||
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF (φ :: φs)) = ofCrAnOpF φ * 𝓝ᶠ(ofCrAnListF φs) := by
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderSign_cons_create φ hφ,
|
||||
normalOrderList_cons_create φ hφ φs]
|
||||
rw [ofCrAnListF_cons, normalOrderF_ofCrAnListF, mul_smul_comm]
|
||||
|
||||
lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_create_mul (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(ofCrAnOpF φ * a) = ofCrAnOpF φ * 𝓝ᶠ(a) := by
|
||||
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnOpF φ)) a =
|
||||
|
@ -136,14 +136,14 @@ lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
|
|||
LinearMap.coe_comp, Function.comp_apply]
|
||||
rw [← ofCrAnListF_cons, normalOrderF_ofCrAnListF_cons_create φ hφ]
|
||||
|
||||
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnStates)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
|
||||
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF (φs ++ [φ])) = 𝓝ᶠ(ofCrAnListF φs) * ofCrAnOpF φ := by
|
||||
rw [normalOrderF_ofCrAnListF, normalOrderSign_append_annihlate φ hφ φs,
|
||||
normalOrderList_append_annihilate φ hφ φs, ofCrAnListF_append, ofCrAnListF_singleton,
|
||||
normalOrderF_ofCrAnListF, smul_mul_assoc]
|
||||
|
||||
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnFieldOp)
|
||||
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
|
||||
(a : FieldOpFreeAlgebra 𝓕) : 𝓝ᶠ(a * ofCrAnOpF φ) = 𝓝ᶠ(a) * ofCrAnOpF φ := by
|
||||
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnOpF φ)) a =
|
||||
|
@ -154,19 +154,19 @@ lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
|
|||
rw [← ofCrAnListF_singleton, ← ofCrAnListF_append, ofCrAnListF_singleton,
|
||||
normalOrderF_ofCrAnListF_append_annihilate φ hφ]
|
||||
|
||||
lemma normalOrderF_crPartF_mul (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_crPartF_mul (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(crPartF φ * a) =
|
||||
crPartF φ * 𝓝ᶠ(a) := by
|
||||
match φ with
|
||||
| .inAsymp φ =>
|
||||
rw [crPartF]
|
||||
exact normalOrderF_create_mul ⟨States.inAsymp φ, ()⟩ rfl a
|
||||
exact normalOrderF_create_mul ⟨FieldOp.inAsymp φ, ()⟩ rfl a
|
||||
| .position φ =>
|
||||
rw [crPartF]
|
||||
exact normalOrderF_create_mul _ rfl _
|
||||
| .outAsymp φ => simp
|
||||
|
||||
lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_mul_anPartF (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * anPartF φ) =
|
||||
𝓝ᶠ(a) * anPartF φ := by
|
||||
match φ with
|
||||
|
@ -185,9 +185,9 @@ lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕)
|
|||
The main result of this section is `normalOrderF_superCommuteF_annihilate_create`.
|
||||
-/
|
||||
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(φs φs' : List 𝓕.CrAnStates) :
|
||||
(φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φc * ofCrAnOpF φa * ofCrAnListF φs) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φa * ofCrAnOpF φc * ofCrAnListF φs) := by
|
||||
rw [mul_assoc, mul_assoc, ← ofCrAnListF_cons, ← ofCrAnListF_cons, ← ofCrAnListF_append]
|
||||
|
@ -196,9 +196,9 @@ lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕
|
|||
rw [ofCrAnListF_append, ofCrAnListF_cons, ofCrAnListF_cons]
|
||||
noncomm_ring
|
||||
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(φs : List 𝓕.CrAnStates) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
(φs : List 𝓕.CrAnFieldOp) (a : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa * a) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φa * ofCrAnOpF φc * a) := by
|
||||
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa)) a =
|
||||
|
@ -210,7 +210,7 @@ lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnStates)
|
|||
rw [normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF φc φa hφc hφa]
|
||||
rfl
|
||||
|
||||
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * ofCrAnOpF φc * ofCrAnOpF φa * b) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
|
||||
|
@ -225,7 +225,7 @@ lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
|
|||
normalOrderF_swap_create_annihlate_ofCrAnListF φc φa hφc hφa]
|
||||
rfl
|
||||
|
||||
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * [ofCrAnOpF φc, ofCrAnOpF φa]ₛca * b) = 0 := by
|
||||
|
@ -234,7 +234,7 @@ lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
|
|||
normalOrderF_swap_create_annihlate φc φa hφc hφa]
|
||||
simp
|
||||
|
||||
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
|
||||
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnFieldOp)
|
||||
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(a b : 𝓕.FieldOpFreeAlgebra) :
|
||||
𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φc]ₛca * b) = 0 := by
|
||||
|
@ -243,7 +243,7 @@ lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
|
|||
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
|
||||
exact Or.inr (normalOrderF_superCommuteF_create_annihilate φc φa hφc hφa ..)
|
||||
|
||||
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * (crPartF φ) * (anPartF φ') * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
𝓝ᶠ(a * (anPartF φ') * (crPartF φ) * b) := by
|
||||
|
@ -253,22 +253,22 @@ lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFre
|
|||
| .position φ, .position φ' =>
|
||||
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
| .inAsymp φ, .outAsymp φ' =>
|
||||
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
| .inAsymp φ, .position φ' =>
|
||||
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
| .position φ, .outAsymp φ' =>
|
||||
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1]
|
||||
rw [normalOrderF_swap_create_annihlate]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
|
||||
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
|
||||
rfl; rfl
|
||||
|
||||
/-!
|
||||
|
@ -279,13 +279,13 @@ Using the results from above.
|
|||
|
||||
-/
|
||||
|
||||
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * (anPartF φ) * (crPartF φ') * b) =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝ᶠ(a * (crPartF φ') *
|
||||
(anPartF φ) * b) := by
|
||||
simp [normalOrderF_swap_crPartF_anPartF, smul_smul]
|
||||
|
||||
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommuteF
|
||||
(crPartF φ) (anPartF φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
|
@ -304,7 +304,7 @@ lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : F
|
|||
rw [crPartF_position, anPartF_posAsymp]
|
||||
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
|
||||
|
||||
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
|
||||
𝓝ᶠ(a * superCommuteF
|
||||
(anPartF φ) (crPartF φ') * b) = 0 := by
|
||||
match φ, φ' with
|
||||
|
@ -330,7 +330,7 @@ lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : F
|
|||
-/
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(crPartF φ * crPartF φ') =
|
||||
crPartF φ * crPartF φ' := by
|
||||
rw [normalOrderF_crPartF_mul]
|
||||
|
@ -339,7 +339,7 @@ lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(anPartF φ * anPartF φ') =
|
||||
anPartF φ * anPartF φ' := by
|
||||
rw [normalOrderF_mul_anPartF]
|
||||
|
@ -348,7 +348,7 @@ lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(crPartF φ * anPartF φ') =
|
||||
crPartF φ * anPartF φ' := by
|
||||
rw [normalOrderF_crPartF_mul]
|
||||
|
@ -357,7 +357,7 @@ lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
|
|||
simp
|
||||
|
||||
@[simp]
|
||||
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(anPartF φ * crPartF φ') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPartF φ' * anPartF φ) := by
|
||||
|
@ -367,7 +367,7 @@ lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
|||
rw [← mul_assoc, normalOrderF_swap_anPartF_crPartF]
|
||||
simp
|
||||
|
||||
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
|
||||
𝓝ᶠ(ofFieldOpF φ * ofFieldOpF φ') =
|
||||
crPartF φ * crPartF φ' +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
|
@ -388,8 +388,8 @@ lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
|
|||
TODO "Split the following two lemmas up into smaller parts."
|
||||
|
||||
lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
||||
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
|
||||
(φc φc' : 𝓕.CrAnFieldOp) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
|
||||
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
(𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca * ofCrAnListF φs')) =
|
||||
normalOrderSign (φs ++ φc' :: φc :: φs') •
|
||||
(ofCrAnListF (createFilter φs) * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca *
|
||||
|
@ -447,10 +447,10 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
|
|||
rw [ofCrAnListF_append, ofCrAnListF_singleton, ofCrAnListF_singleton, smul_mul_assoc]
|
||||
|
||||
lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
||||
(φa φa' : 𝓕.CrAnStates)
|
||||
(φa φa' : 𝓕.CrAnFieldOp)
|
||||
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
|
||||
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
|
||||
(φs φs' : List 𝓕.CrAnStates) :
|
||||
(φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * ofCrAnListF φs') =
|
||||
normalOrderSign (φs ++ φa' :: φa :: φs') •
|
||||
(ofCrAnListF (createFilter (φs ++ φs'))
|
||||
|
@ -520,15 +520,15 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnStates) :
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnFieldOp) :
|
||||
[ofCrAnListF φs, 𝓝ᶠ(ofCrAnListF φs')]ₛca =
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofCrAnListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs := by
|
||||
simp [normalOrderF_ofCrAnListF, map_smul, superCommuteF_ofCrAnListF_ofCrAnListF, ofCrAnListF_append,
|
||||
smul_sub, smul_smul, mul_comm]
|
||||
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs := by
|
||||
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
|
||||
|
@ -544,21 +544,21 @@ lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrA
|
|||
|
||||
-/
|
||||
|
||||
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) :
|
||||
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) :
|
||||
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs
|
||||
+ [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF]
|
||||
|
||||
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp)
|
||||
(φs' : List 𝓕.FieldOp) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnOpF φ
|
||||
+ [ofCrAnOpF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
simp [← ofCrAnListF_singleton, ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
|
||||
|
||||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States)
|
||||
(φs' : List 𝓕.States) :
|
||||
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.FieldOp)
|
||||
(φs' : List 𝓕.FieldOp) :
|
||||
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
|
||||
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue