refactor: Rename States to FieldOps

This commit is contained in:
jstoobysmith 2025-02-03 11:28:14 +00:00
parent 171e80fc04
commit 8f41de5785
36 changed files with 946 additions and 946 deletions

View file

@ -12,7 +12,7 @@ import HepLean.PerturbationTheory.Koszul.KoszulSign
In the module
`HepLean.PerturbationTheory.FieldSpecification.NormalOrder`
we defined the normal ordering of a list of `CrAnStates`.
we defined the normal ordering of a list of `CrAnFieldOp`.
In this module we extend the normal ordering to a linear map on `FieldOpFreeAlgebra`.
We derive properties of this normal ordering.
@ -29,7 +29,7 @@ noncomputable section
/-- The linear map on the free creation and annihlation
algebra defined as the map taking
a list of CrAnStates to the normal-ordered list of states multiplied by
a list of CrAnFieldOp to the normal-ordered list of states multiplied by
the sign corresponding to the number of fermionic-fermionic
exchanges done in ordering. -/
def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 :=
@ -39,11 +39,11 @@ def normalOrderF : FieldOpFreeAlgebra 𝓕 →ₗ[] FieldOpFreeAlgebra 𝓕 :
@[inherit_doc normalOrderF]
scoped[FieldSpecification.FieldOpFreeAlgebra] notation "𝓝ᶠ(" a ")" => normalOrderF a
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnStates) :
lemma normalOrderF_ofCrAnListF (φs : List 𝓕.CrAnFieldOp) :
𝓝ᶠ(ofCrAnListF φs) = normalOrderSign φs • ofCrAnListF (normalOrderList φs) := by
rw [← ofListBasis_eq_ofList, normalOrderF, Basis.constr_basis]
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnStates) :
lemma ofCrAnListF_eq_normalOrderF (φs : List 𝓕.CrAnFieldOp) :
ofCrAnListF (normalOrderList φs) = normalOrderSign φs • 𝓝ᶠ(ofCrAnListF φs) := by
rw [normalOrderF_ofCrAnListF, normalOrderList, smul_smul, normalOrderSign,
Wick.koszulSign_mul_self, one_smul]
@ -119,14 +119,14 @@ lemma normalOrderF_normalOrderF_left (a b : 𝓕.FieldOpFreeAlgebra) : 𝓝ᶠ(a
-/
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnStates) :
lemma normalOrderF_ofCrAnListF_cons_create (φ : 𝓕.CrAnFieldOp)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (φs : List 𝓕.CrAnFieldOp) :
𝓝ᶠ(ofCrAnListF (φ :: φs)) = ofCrAnOpF φ * 𝓝ᶠ(ofCrAnListF φs) := by
rw [normalOrderF_ofCrAnListF, normalOrderSign_cons_create φ hφ,
normalOrderList_cons_create φ hφ φs]
rw [ofCrAnListF_cons, normalOrderF_ofCrAnListF, mul_smul_comm]
lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
lemma normalOrderF_create_mul (φ : 𝓕.CrAnFieldOp)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.create) (a : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(ofCrAnOpF φ * a) = ofCrAnOpF φ * 𝓝ᶠ(a) := by
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnOpF φ)) a =
@ -136,14 +136,14 @@ lemma normalOrderF_create_mul (φ : 𝓕.CrAnStates)
LinearMap.coe_comp, Function.comp_apply]
rw [← ofCrAnListF_cons, normalOrderF_ofCrAnListF_cons_create φ hφ]
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnStates)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnStates) :
lemma normalOrderF_ofCrAnListF_append_annihilate (φ : 𝓕.CrAnFieldOp)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate) (φs : List 𝓕.CrAnFieldOp) :
𝓝ᶠ(ofCrAnListF (φs ++ [φ])) = 𝓝ᶠ(ofCrAnListF φs) * ofCrAnOpF φ := by
rw [normalOrderF_ofCrAnListF, normalOrderSign_append_annihlate φ hφ φs,
normalOrderList_append_annihilate φ hφ φs, ofCrAnListF_append, ofCrAnListF_singleton,
normalOrderF_ofCrAnListF, smul_mul_assoc]
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnFieldOp)
(hφ : 𝓕 |>ᶜ φ = CreateAnnihilate.annihilate)
(a : FieldOpFreeAlgebra 𝓕) : 𝓝ᶠ(a * ofCrAnOpF φ) = 𝓝ᶠ(a) * ofCrAnOpF φ := by
change (normalOrderF ∘ₗ mulLinearMap.flip (ofCrAnOpF φ)) a =
@ -154,19 +154,19 @@ lemma normalOrderF_mul_annihilate (φ : 𝓕.CrAnStates)
rw [← ofCrAnListF_singleton, ← ofCrAnListF_append, ofCrAnListF_singleton,
normalOrderF_ofCrAnListF_append_annihilate φ hφ]
lemma normalOrderF_crPartF_mul (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
lemma normalOrderF_crPartF_mul (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(crPartF φ * a) =
crPartF φ * 𝓝ᶠ(a) := by
match φ with
| .inAsymp φ =>
rw [crPartF]
exact normalOrderF_create_mul ⟨States.inAsymp φ, ()⟩ rfl a
exact normalOrderF_create_mul ⟨FieldOp.inAsymp φ, ()⟩ rfl a
| .position φ =>
rw [crPartF]
exact normalOrderF_create_mul _ rfl _
| .outAsymp φ => simp
lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕) :
lemma normalOrderF_mul_anPartF (φ : 𝓕.FieldOp) (a : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * anPartF φ) =
𝓝ᶠ(a) * anPartF φ := by
match φ with
@ -185,9 +185,9 @@ lemma normalOrderF_mul_anPartF (φ : 𝓕.States) (a : FieldOpFreeAlgebra 𝓕)
The main result of this section is `normalOrderF_superCommuteF_annihilate_create`.
-/
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnStates)
lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
(φs φs' : List 𝓕.CrAnFieldOp) :
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φc * ofCrAnOpF φa * ofCrAnListF φs) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
𝓝ᶠ(ofCrAnListF φs' * ofCrAnOpF φa * ofCrAnOpF φc * ofCrAnListF φs) := by
rw [mul_assoc, mul_assoc, ← ofCrAnListF_cons, ← ofCrAnListF_cons, ← ofCrAnListF_append]
@ -196,9 +196,9 @@ lemma normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF (φc φa : 𝓕
rw [ofCrAnListF_append, ofCrAnListF_cons, ofCrAnListF_cons]
noncomm_ring
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnStates)
lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnFieldOp)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(φs : List 𝓕.CrAnStates) (a : 𝓕.FieldOpFreeAlgebra) :
(φs : List 𝓕.CrAnFieldOp) (a : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa * a) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
𝓝ᶠ(ofCrAnListF φs * ofCrAnOpF φa * ofCrAnOpF φc * a) := by
change (normalOrderF ∘ₗ mulLinearMap (ofCrAnListF φs * ofCrAnOpF φc * ofCrAnOpF φa)) a =
@ -210,7 +210,7 @@ lemma normalOrderF_swap_create_annihlate_ofCrAnListF (φc φa : 𝓕.CrAnStates)
rw [normalOrderF_swap_create_annihlate_ofCrAnListF_ofCrAnListF φc φa hφc hφa]
rfl
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnFieldOp)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(a * ofCrAnOpF φc * ofCrAnOpF φa * b) = 𝓢(𝓕 |>ₛ φc, 𝓕 |>ₛ φa) •
@ -225,7 +225,7 @@ lemma normalOrderF_swap_create_annihlate (φc φa : 𝓕.CrAnStates)
normalOrderF_swap_create_annihlate_ofCrAnListF φc φa hφc hφa]
rfl
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnFieldOp)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(a * [ofCrAnOpF φc, ofCrAnOpF φa]ₛca * b) = 0 := by
@ -234,7 +234,7 @@ lemma normalOrderF_superCommuteF_create_annihilate (φc φa : 𝓕.CrAnStates)
normalOrderF_swap_create_annihlate φc φa hφc hφa]
simp
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnFieldOp)
(hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create) (hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(a b : 𝓕.FieldOpFreeAlgebra) :
𝓝ᶠ(a * [ofCrAnOpF φa, ofCrAnOpF φc]ₛca * b) = 0 := by
@ -243,7 +243,7 @@ lemma normalOrderF_superCommuteF_annihilate_create (φc φa : 𝓕.CrAnStates)
Algebra.smul_mul_assoc, map_neg, map_smul, neg_eq_zero, smul_eq_zero]
exact Or.inr (normalOrderF_superCommuteF_create_annihilate φc φa hφc hφa ..)
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * (crPartF φ) * (anPartF φ') * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
𝓝ᶠ(a * (anPartF φ') * (crPartF φ) * b) := by
@ -253,22 +253,22 @@ lemma normalOrderF_swap_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFre
| .position φ, .position φ' =>
simp only [crPartF_position, anPartF_position, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
rfl; rfl
| .inAsymp φ, .outAsymp φ' =>
simp only [crPartF_negAsymp, anPartF_posAsymp, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
rfl; rfl
| .inAsymp φ, .position φ' =>
simp only [crPartF_negAsymp, anPartF_position, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
rfl; rfl
| .position φ, .outAsymp φ' =>
simp only [crPartF_position, anPartF_posAsymp, instCommGroup.eq_1]
rw [normalOrderF_swap_create_annihlate]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnStatesToStates_prod]
simp only [instCommGroup.eq_1, crAnStatistics, Function.comp_apply, crAnFieldOpToFieldOp_prod]
rfl; rfl
/-!
@ -279,13 +279,13 @@ Using the results from above.
-/
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
lemma normalOrderF_swap_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * (anPartF φ) * (crPartF φ') * b) =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • 𝓝ᶠ(a * (crPartF φ') *
(anPartF φ) * b) := by
simp [normalOrderF_swap_crPartF_anPartF, smul_smul]
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * superCommuteF
(crPartF φ) (anPartF φ') * b) = 0 := by
match φ, φ' with
@ -304,7 +304,7 @@ lemma normalOrderF_superCommuteF_crPartF_anPartF (φ φ' : 𝓕.States) (a b : F
rw [crPartF_position, anPartF_posAsymp]
exact normalOrderF_superCommuteF_create_annihilate _ _ rfl rfl ..
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : FieldOpFreeAlgebra 𝓕) :
lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.FieldOp) (a b : FieldOpFreeAlgebra 𝓕) :
𝓝ᶠ(a * superCommuteF
(anPartF φ) (crPartF φ') * b) = 0 := by
match φ, φ' with
@ -330,7 +330,7 @@ lemma normalOrderF_superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) (a b : F
-/
@[simp]
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
𝓝ᶠ(crPartF φ * crPartF φ') =
crPartF φ * crPartF φ' := by
rw [normalOrderF_crPartF_mul]
@ -339,7 +339,7 @@ lemma normalOrderF_crPartF_mul_crPartF (φ φ' : 𝓕.States) :
simp
@[simp]
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
𝓝ᶠ(anPartF φ * anPartF φ') =
anPartF φ * anPartF φ' := by
rw [normalOrderF_mul_anPartF]
@ -348,7 +348,7 @@ lemma normalOrderF_anPartF_mul_anPartF (φ φ' : 𝓕.States) :
simp
@[simp]
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.FieldOp) :
𝓝ᶠ(crPartF φ * anPartF φ') =
crPartF φ * anPartF φ' := by
rw [normalOrderF_crPartF_mul]
@ -357,7 +357,7 @@ lemma normalOrderF_crPartF_mul_anPartF (φ φ' : 𝓕.States) :
simp
@[simp]
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.FieldOp) :
𝓝ᶠ(anPartF φ * crPartF φ') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
(crPartF φ' * anPartF φ) := by
@ -367,7 +367,7 @@ lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
rw [← mul_assoc, normalOrderF_swap_anPartF_crPartF]
simp
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.FieldOp) :
𝓝ᶠ(ofFieldOpF φ * ofFieldOpF φ') =
crPartF φ * crPartF φ' +
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
@ -388,8 +388,8 @@ lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
TODO "Split the following two lemmas up into smaller parts."
lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
(φc φc' : 𝓕.CrAnStates) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnStates) :
(φc φc' : 𝓕.CrAnFieldOp) (hφc : 𝓕 |>ᶜ φc = CreateAnnihilate.create)
(hφc' : 𝓕 |>ᶜ φc' = CreateAnnihilate.create) (φs φs' : List 𝓕.CrAnFieldOp) :
(𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca * ofCrAnListF φs')) =
normalOrderSign (φs ++ φc' :: φc :: φs') •
(ofCrAnListF (createFilter φs) * [ofCrAnOpF φc, ofCrAnOpF φc']ₛca *
@ -447,10 +447,10 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_create_create_ofCrAnListF
rw [ofCrAnListF_append, ofCrAnListF_singleton, ofCrAnListF_singleton, smul_mul_assoc]
lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
(φa φa' : 𝓕.CrAnStates)
(φa φa' : 𝓕.CrAnFieldOp)
(hφa : 𝓕 |>ᶜ φa = CreateAnnihilate.annihilate)
(hφa' : 𝓕 |>ᶜ φa' = CreateAnnihilate.annihilate)
(φs φs' : List 𝓕.CrAnStates) :
(φs φs' : List 𝓕.CrAnFieldOp) :
𝓝ᶠ(ofCrAnListF φs * [ofCrAnOpF φa, ofCrAnOpF φa']ₛca * ofCrAnListF φs') =
normalOrderSign (φs ++ φa' :: φa :: φs') •
(ofCrAnListF (createFilter (φs ++ φs'))
@ -520,15 +520,15 @@ lemma normalOrderF_superCommuteF_ofCrAnListF_annihilate_annihilate_ofCrAnListF
-/
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnStates) :
lemma ofCrAnListF_superCommuteF_normalOrderF_ofCrAnListF (φs φs' : List 𝓕.CrAnFieldOp) :
[ofCrAnListF φs, 𝓝ᶠ(ofCrAnListF φs')]ₛca =
ofCrAnListF φs * 𝓝ᶠ(ofCrAnListF φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofCrAnListF φs') * ofCrAnListF φs := by
simp [normalOrderF_ofCrAnListF, map_smul, superCommuteF_ofCrAnListF_ofCrAnListF, ofCrAnListF_append,
smul_sub, smul_smul, mul_comm]
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrAnFieldOp)
(φs' : List 𝓕.FieldOp) : [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca =
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') -
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs := by
rw [ofFieldOpListF_sum, map_sum, Finset.mul_sum, Finset.smul_sum, Finset.sum_mul,
@ -544,21 +544,21 @@ lemma ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF (φs : List 𝓕.CrA
-/
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates)
(φs' : List 𝓕.States) :
lemma ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnFieldOp)
(φs' : List 𝓕.FieldOp) :
ofCrAnListF φs * 𝓝ᶠ(ofFieldOpListF φs') =
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnListF φs
+ [ofCrAnListF φs, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
simp [ofCrAnListF_superCommuteF_normalOrderF_ofFieldOpListF]
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnStates)
(φs' : List 𝓕.States) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
lemma ofCrAnOpF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.CrAnFieldOp)
(φs' : List 𝓕.FieldOp) : ofCrAnOpF φ * 𝓝ᶠ(ofFieldOpListF φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs') * ofCrAnOpF φ
+ [ofCrAnOpF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by
simp [← ofCrAnListF_singleton, ofCrAnListF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF]
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States)
(φs' : List 𝓕.States) :
lemma anPartF_mul_normalOrderF_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.FieldOp)
(φs' : List 𝓕.FieldOp) :
anPartF φ * 𝓝ᶠ(ofFieldOpListF φs') =
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • 𝓝ᶠ(ofFieldOpListF φs' * anPartF φ)
+ [anPartF φ, 𝓝ᶠ(ofFieldOpListF φs')]ₛca := by