refactor: Rename States to FieldOps

This commit is contained in:
jstoobysmith 2025-02-03 11:28:14 +00:00
parent 171e80fc04
commit 8f41de5785
36 changed files with 946 additions and 946 deletions

View file

@ -27,7 +27,7 @@ open FieldStatistic
-/
lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.States)
lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.FieldOp)
(a : Finset (Fin φs.length)) (φsΛ : WickContraction φs.length) (hg : GradingCompliant φs φsΛ)
(hnon : ∀ i, φsΛ.getDual? i = none → i ∉ a)
(hsom : ∀ i, (h : (φsΛ.getDual? i).isSome) → i ∈ a → (φsΛ.getDual? i).get h ∈ a) :
@ -64,7 +64,7 @@ lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.States)
rfl
lemma signFinset_insertAndContract_some (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signFinset_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (i1 i2 : Fin φs.length)
(j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).signFinset (finCongr (insertIdx_length_fin φ φs i).symm
@ -206,7 +206,7 @@ lemma signFinset_insertAndContract_some (φ : 𝓕.States) (φs : List 𝓕.Stat
inserting `φ` into `φs` at position `i` and contracting it with `j : c.uncontracted`
coming from contractions other then the `i` and `j` contraction but which
are effected by this new contraction. -/
def signInsertSomeProd (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
def signInsertSomeProd (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) : :=
∏ (a : φsΛ.1),
if i.succAbove (φsΛ.fstFieldOfContract a) < i ∧ i < i.succAbove (φsΛ.sndFieldOfContract a) ∧
@ -223,7 +223,7 @@ def signInsertSomeProd (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : Wick
and an `i : Fin φs.length.succ`, the change in sign of the contraction associated with
inserting `φ` into `φs` at position `i` and contracting it with `j : c.uncontracted`
coming from putting `i` next to `j`. -/
def signInsertSomeCoef (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
def signInsertSomeCoef (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) : :=
let a : (φsΛ ↩Λ φ i (some j)).1 := congrLift (insertIdx_length_fin φ φs i).symm
⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩;
@ -235,11 +235,11 @@ def signInsertSomeCoef (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : Wick
/-- Given a Wick contraction `φsΛ` associated with a list of states `φs`
and an `i : Fin φs.length.succ`, the change in sign of the contraction associated with
inserting `φ` into `φs` at position `i` and contracting it with `j : c.uncontracted`. -/
def signInsertSome (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
def signInsertSome (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) : :=
signInsertSomeCoef φ φs φsΛ i j * signInsertSomeProd φ φs φsΛ i j
lemma sign_insert_some (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
lemma sign_insert_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(φsΛ ↩Λ φ i (some j)).sign = (φsΛ.signInsertSome φ φs i j) * φsΛ.sign := by
rw [sign]
@ -280,7 +280,7 @@ lemma sign_insert_some (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : Wick
rw [stat_ofFinset_of_insertAndContractLiftFinset]
simp_all
lemma signInsertSomeProd_eq_one_if (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSomeProd_eq_one_if (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted)
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) :
φsΛ.signInsertSomeProd φ φs i j =
@ -313,7 +313,7 @@ lemma signInsertSomeProd_eq_one_if (φ : 𝓕.States) (φs : List 𝓕.States)
implies_true, and_true]
omega
lemma signInsertSomeProd_eq_prod_prod (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSomeProd_eq_prod_prod (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
(hg : GradingCompliant φs φsΛ) :
@ -347,7 +347,7 @@ lemma signInsertSomeProd_eq_prod_prod (φ : 𝓕.States) (φs : List 𝓕.States
· omega
simp [hφj]
lemma signInsertSomeProd_eq_prod_fin (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSomeProd_eq_prod_fin (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
(hg : GradingCompliant φs φsΛ) :
@ -380,7 +380,7 @@ lemma signInsertSomeProd_eq_prod_fin (φ : 𝓕.States) (φs : List 𝓕.States)
simp only [hφj, Fin.getElem_fin]
exact hg
lemma signInsertSomeProd_eq_list (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSomeProd_eq_list (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
(hg : GradingCompliant φs φsΛ) :
@ -414,7 +414,7 @@ lemma signInsertSomeProd_eq_list (φ : 𝓕.States) (φs : List 𝓕.States)
simp only [hφj, Fin.getElem_fin]
exact hg
lemma signInsertSomeProd_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSomeProd_eq_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
(hg : GradingCompliant φs φsΛ) :
@ -442,7 +442,7 @@ lemma signInsertSomeProd_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
simp only [hφj, Fin.getElem_fin]
exact hg
lemma signInsertSomeCoef_if (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
lemma signInsertSomeCoef_if (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) :
φsΛ.signInsertSomeCoef φ φs i j =
if i < i.succAbove j then
@ -462,7 +462,7 @@ lemma signInsertSomeCoef_if (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ :
· simp [hφj]
lemma stat_signFinset_insert_some_self_fst
(φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(𝓕 |>ₛ ⟨(φs.insertIdx i φ).get,
(signFinset (φsΛ ↩Λ φ i (some j)) (finCongr (insertIdx_length_fin φ φs i).symm i)
@ -538,7 +538,7 @@ lemma stat_signFinset_insert_some_self_fst
have hy2 := hy2 h
simpa [Option.get_map] using hy2
lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.States) (φs : List 𝓕.States)
lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
(𝓕 |>ₛ ⟨(φs.insertIdx i φ).get,
(signFinset (φsΛ ↩Λ φ i (some j))
@ -618,7 +618,7 @@ lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.States) (φs : List 𝓕.S
simp only [Option.get_map, Function.comp_apply, Fin.coe_cast, Fin.val_fin_lt]
exact Fin.succAbove_lt_succAbove_iff.mpr hy2
lemma signInsertSomeCoef_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSomeCoef_eq_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted)
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) : φsΛ.signInsertSomeCoef φ φs i j =
if i < i.succAbove j then
@ -637,7 +637,7 @@ lemma signInsertSomeCoef_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
contracting it with `k` (`k < i`) is equal
to the sign got by moving `φ` through each field `φ₀…φᵢ₋₁`
multiplied by the sign got moving `φ` through each uncontracted field `φ₀…φₖ`. -/
lemma signInsertSome_mul_filter_contracted_of_lt (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSome_mul_filter_contracted_of_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(hk : i.succAbove k < i) (hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = 𝓕 |>ₛ φs[k.1]) :
signInsertSome φ φs φsΛ i k *
@ -744,7 +744,7 @@ lemma signInsertSome_mul_filter_contracted_of_lt (φ : 𝓕.States) (φs : List
contracting it with `k` (`i < k`) is equal
to the sign got by moving `φ` through each field `φ₀…φᵢ₋₁`
multiplied by the sign got moving `φ` through each uncontracted field `φ₀…φₖ₋₁`. -/
lemma signInsertSome_mul_filter_contracted_of_not_lt (φ : 𝓕.States) (φs : List 𝓕.States)
lemma signInsertSome_mul_filter_contracted_of_not_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
(hk : ¬ i.succAbove k < i) (hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = 𝓕 |>ₛ φs[k.1]) :
signInsertSome φ φs φsΛ i k *