refactor: Rename States to FieldOps
This commit is contained in:
parent
171e80fc04
commit
8f41de5785
36 changed files with 946 additions and 946 deletions
|
@ -27,7 +27,7 @@ open FieldStatistic
|
|||
-/
|
||||
|
||||
|
||||
lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.States)
|
||||
lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.FieldOp)
|
||||
(a : Finset (Fin φs.length)) (φsΛ : WickContraction φs.length) (hg : GradingCompliant φs φsΛ)
|
||||
(hnon : ∀ i, φsΛ.getDual? i = none → i ∉ a)
|
||||
(hsom : ∀ i, (h : (φsΛ.getDual? i).isSome) → i ∈ a → (φsΛ.getDual? i).get h ∈ a) :
|
||||
|
@ -64,7 +64,7 @@ lemma stat_ofFinset_eq_one_of_gradingCompliant (φs : List 𝓕.States)
|
|||
rfl
|
||||
|
||||
|
||||
lemma signFinset_insertAndContract_some (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signFinset_insertAndContract_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (i1 i2 : Fin φs.length)
|
||||
(j : φsΛ.uncontracted) :
|
||||
(φsΛ ↩Λ φ i (some j)).signFinset (finCongr (insertIdx_length_fin φ φs i).symm
|
||||
|
@ -206,7 +206,7 @@ lemma signFinset_insertAndContract_some (φ : 𝓕.States) (φs : List 𝓕.Stat
|
|||
inserting `φ` into `φs` at position `i` and contracting it with `j : c.uncontracted`
|
||||
coming from contractions other then the `i` and `j` contraction but which
|
||||
are effected by this new contraction. -/
|
||||
def signInsertSomeProd (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
def signInsertSomeProd (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) : ℂ :=
|
||||
∏ (a : φsΛ.1),
|
||||
if i.succAbove (φsΛ.fstFieldOfContract a) < i ∧ i < i.succAbove (φsΛ.sndFieldOfContract a) ∧
|
||||
|
@ -223,7 +223,7 @@ def signInsertSomeProd (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : Wick
|
|||
and an `i : Fin φs.length.succ`, the change in sign of the contraction associated with
|
||||
inserting `φ` into `φs` at position `i` and contracting it with `j : c.uncontracted`
|
||||
coming from putting `i` next to `j`. -/
|
||||
def signInsertSomeCoef (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
def signInsertSomeCoef (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) : ℂ :=
|
||||
let a : (φsΛ ↩Λ φ i (some j)).1 := congrLift (insertIdx_length_fin φ φs i).symm
|
||||
⟨{i, i.succAbove j}, by simp [insertAndContractNat]⟩;
|
||||
|
@ -235,11 +235,11 @@ def signInsertSomeCoef (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : Wick
|
|||
/-- Given a Wick contraction `φsΛ` associated with a list of states `φs`
|
||||
and an `i : Fin φs.length.succ`, the change in sign of the contraction associated with
|
||||
inserting `φ` into `φs` at position `i` and contracting it with `j : c.uncontracted`. -/
|
||||
def signInsertSome (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
def signInsertSome (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) : ℂ :=
|
||||
signInsertSomeCoef φ φs φsΛ i j * signInsertSomeProd φ φs φsΛ i j
|
||||
|
||||
lemma sign_insert_some (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
lemma sign_insert_some (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
||||
(φsΛ ↩Λ φ i (some j)).sign = (φsΛ.signInsertSome φ φs i j) * φsΛ.sign := by
|
||||
rw [sign]
|
||||
|
@ -280,7 +280,7 @@ lemma sign_insert_some (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : Wick
|
|||
rw [stat_ofFinset_of_insertAndContractLiftFinset]
|
||||
simp_all
|
||||
|
||||
lemma signInsertSomeProd_eq_one_if (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSomeProd_eq_one_if (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted)
|
||||
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) :
|
||||
φsΛ.signInsertSomeProd φ φs i j =
|
||||
|
@ -313,7 +313,7 @@ lemma signInsertSomeProd_eq_one_if (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
implies_true, and_true]
|
||||
omega
|
||||
|
||||
lemma signInsertSomeProd_eq_prod_prod (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSomeProd_eq_prod_prod (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
|
||||
(hg : GradingCompliant φs φsΛ) :
|
||||
|
@ -347,7 +347,7 @@ lemma signInsertSomeProd_eq_prod_prod (φ : 𝓕.States) (φs : List 𝓕.States
|
|||
· omega
|
||||
simp [hφj]
|
||||
|
||||
lemma signInsertSomeProd_eq_prod_fin (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSomeProd_eq_prod_fin (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
|
||||
(hg : GradingCompliant φs φsΛ) :
|
||||
|
@ -380,7 +380,7 @@ lemma signInsertSomeProd_eq_prod_fin (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
simp only [hφj, Fin.getElem_fin]
|
||||
exact hg
|
||||
|
||||
lemma signInsertSomeProd_eq_list (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSomeProd_eq_list (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
|
||||
(hg : GradingCompliant φs φsΛ) :
|
||||
|
@ -414,7 +414,7 @@ lemma signInsertSomeProd_eq_list (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
simp only [hφj, Fin.getElem_fin]
|
||||
exact hg
|
||||
|
||||
lemma signInsertSomeProd_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSomeProd_eq_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1]))
|
||||
(hg : GradingCompliant φs φsΛ) :
|
||||
|
@ -442,7 +442,7 @@ lemma signInsertSomeProd_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
simp only [hφj, Fin.getElem_fin]
|
||||
exact hg
|
||||
|
||||
lemma signInsertSomeCoef_if (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
lemma signInsertSomeCoef_if (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) (hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) :
|
||||
φsΛ.signInsertSomeCoef φ φs i j =
|
||||
if i < i.succAbove j then
|
||||
|
@ -462,7 +462,7 @@ lemma signInsertSomeCoef_if (φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ :
|
|||
· simp [hφj]
|
||||
|
||||
lemma stat_signFinset_insert_some_self_fst
|
||||
(φ : 𝓕.States) (φs : List 𝓕.States) (φsΛ : WickContraction φs.length)
|
||||
(φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp) (φsΛ : WickContraction φs.length)
|
||||
(i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
||||
(𝓕 |>ₛ ⟨(φs.insertIdx i φ).get,
|
||||
(signFinset (φsΛ ↩Λ φ i (some j)) (finCongr (insertIdx_length_fin φ φs i).symm i)
|
||||
|
@ -538,7 +538,7 @@ lemma stat_signFinset_insert_some_self_fst
|
|||
have hy2 := hy2 h
|
||||
simpa [Option.get_map] using hy2
|
||||
|
||||
lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted) :
|
||||
(𝓕 |>ₛ ⟨(φs.insertIdx i φ).get,
|
||||
(signFinset (φsΛ ↩Λ φ i (some j))
|
||||
|
@ -618,7 +618,7 @@ lemma stat_signFinset_insert_some_self_snd (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
simp only [Option.get_map, Function.comp_apply, Fin.coe_cast, Fin.val_fin_lt]
|
||||
exact Fin.succAbove_lt_succAbove_iff.mpr hy2
|
||||
|
||||
lemma signInsertSomeCoef_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSomeCoef_eq_finset (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (j : φsΛ.uncontracted)
|
||||
(hφj : (𝓕 |>ₛ φ) = (𝓕 |>ₛ φs[j.1])) : φsΛ.signInsertSomeCoef φ φs i j =
|
||||
if i < i.succAbove j then
|
||||
|
@ -637,7 +637,7 @@ lemma signInsertSomeCoef_eq_finset (φ : 𝓕.States) (φs : List 𝓕.States)
|
|||
contracting it with `k` (`k < i`) is equal
|
||||
to the sign got by moving `φ` through each field `φ₀…φᵢ₋₁`
|
||||
multiplied by the sign got moving `φ` through each uncontracted field `φ₀…φₖ`. -/
|
||||
lemma signInsertSome_mul_filter_contracted_of_lt (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSome_mul_filter_contracted_of_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
|
||||
(hk : i.succAbove k < i) (hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = 𝓕 |>ₛ φs[k.1]) :
|
||||
signInsertSome φ φs φsΛ i k *
|
||||
|
@ -744,7 +744,7 @@ lemma signInsertSome_mul_filter_contracted_of_lt (φ : 𝓕.States) (φs : List
|
|||
contracting it with `k` (`i < k`) is equal
|
||||
to the sign got by moving `φ` through each field `φ₀…φᵢ₋₁`
|
||||
multiplied by the sign got moving `φ` through each uncontracted field `φ₀…φₖ₋₁`. -/
|
||||
lemma signInsertSome_mul_filter_contracted_of_not_lt (φ : 𝓕.States) (φs : List 𝓕.States)
|
||||
lemma signInsertSome_mul_filter_contracted_of_not_lt (φ : 𝓕.FieldOp) (φs : List 𝓕.FieldOp)
|
||||
(φsΛ : WickContraction φs.length) (i : Fin φs.length.succ) (k : φsΛ.uncontracted)
|
||||
(hk : ¬ i.succAbove k < i) (hg : GradingCompliant φs φsΛ ∧ (𝓕 |>ₛ φ) = 𝓕 |>ₛ φs[k.1]) :
|
||||
signInsertSome φ φs φsΛ i k *
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue