feat: Add unitary rep

This commit is contained in:
jstoobysmith 2024-05-09 08:16:23 -04:00
parent 0619e74d6c
commit 8fd0b63edb
2 changed files with 103 additions and 0 deletions

View file

@ -8,6 +8,8 @@ import Mathlib.Geometry.Manifold.VectorBundle.Basic
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
import Mathlib.Geometry.Manifold.Instances.Real
import Mathlib.RepresentationTheory.Basic
import Mathlib.LinearAlgebra.Matrix.ToLin
import Mathlib.Analysis.InnerProductSpace.Adjoint
/-!
# The Standard Model
@ -29,4 +31,55 @@ abbrev spaceTime := EuclideanSpace (Fin 4)
abbrev guageGroup : Type := specialUnitaryGroup (Fin 3) ×
specialUnitaryGroup (Fin 2) × unitary
-- TODO: Move to MathLib.
lemma star_specialUnitary (g : specialUnitaryGroup (Fin 2) ) :
star g.1 ∈ specialUnitaryGroup (Fin 2) := by
have hg := mem_specialUnitaryGroup_iff.mp g.prop
rw [@mem_specialUnitaryGroup_iff]
apply And.intro
rw [@mem_unitaryGroup_iff, star_star]
exact mem_unitaryGroup_iff'.mp hg.1
rw [star_eq_conjTranspose, det_conjTranspose, hg.2, star_one]
-- TOMOVE
@[simps!]
noncomputable def repU1Map (g : unitary ) : unitaryGroup (Fin 2) :=
⟨g ^ 3 • 1, by
rw [mem_unitaryGroup_iff, smul_one_mul, show g = ⟨g.1, g.prop⟩ from rfl]
simp only [SubmonoidClass.mk_pow, Submonoid.mk_smul, star_smul, star_pow, RCLike.star_def,
star_one]
rw [smul_smul, ← mul_pow]
erw [(unitary.mem_iff.mp g.prop).2]
simp only [one_pow, one_smul]⟩
@[simps!]
noncomputable def repU1 : unitary →* unitaryGroup (Fin 2) where
toFun g := repU1Map g
map_mul' g h := by
simp only [repU1Map, Submonoid.mk_mul_mk, mul_smul_one, smul_smul, mul_comm, ← mul_pow]
map_one' := by
simp only [repU1Map, one_pow, one_smul, Submonoid.mk_eq_one]
@[simps!]
def fundamentalSU2 : specialUnitaryGroup (Fin 2) →* unitaryGroup (Fin 2) where
toFun g := ⟨g.1, g.prop.1⟩
map_mul' _ _ := Subtype.ext rfl
map_one' := Subtype.ext rfl
lemma repU1_fundamentalSU2_commute (u1 : unitary ) (g : specialUnitaryGroup (Fin 2) ) :
repU1 u1 * fundamentalSU2 g = fundamentalSU2 g * repU1 u1 := by
apply Subtype.ext
simp
noncomputable def higgsRepUnitary : guageGroup →* unitaryGroup (Fin 2) where
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
map_mul' := by
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
rw [repU1.map_mul, fundamentalSU2.map_mul]
rw [mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
repeat rw [mul_assoc]
map_one' := by
simp
end StandardModel

View file

@ -55,6 +55,8 @@ instance : NormedAddCommGroup (Fin 2 → ) := by
section higgsVec
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → )` acheived by
casting vectors. -/
def higgsVecToFin2 : higgsVec →L[] (Fin 2 → ) where
@ -102,6 +104,49 @@ noncomputable def higgsRep : Representation guageGroup higgsVec where
namespace higgsVec
/-- An orthonomral basis of higgsVec. -/
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) higgsVec :=
EuclideanSpace.basisFun (Fin 2)
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
@[simps!]
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) →* (higgsVec →L[] higgsVec) where
toFun g := LinearMap.toContinuousLinearMap
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ) :
matrixToLin (star g) = star (matrixToLin g) :=
ContinuousLinearMap.coe_inj.mp (Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g)
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ) :
matrixToLin g ∈ unitary (higgsVec →L[] higgsVec) := by
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul]
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
simp
noncomputable def unitaryToLin : unitaryGroup (Fin 2) →* unitary (higgsVec →L[] higgsVec) where
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
map_mul' g h := by
ext
simp
map_one' := by
ext
simp
@[simps!]
def unitToLinear : unitary (higgsVec →L[] higgsVec) →* higgsVec →ₗ[] higgsVec :=
DistribMulAction.toModuleEnd higgsVec
@[simps!]
def rep : Representation guageGroup higgsVec :=
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
lemma norm_invariant (g : guageGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
section. -/
noncomputable def toField (φ : higgsVec) : higgsField where
@ -115,6 +160,11 @@ noncomputable def toField (φ : higgsVec) : higgsField where
def potential (μSq lambda : ) (φ : higgsVec) : := - μSq * ‖φ‖ ^ 2 +
lambda * ‖φ‖ ^ 4
lemma potential_invariant (μSq lambda : ) (φ : higgsVec) (g : guageGroup) :
potential μSq lambda (rep g φ) = potential μSq lambda φ := by
simp only [potential, neg_mul]
rw [norm_invariant]
lemma potential_snd_term_nonneg {lambda : } (hLam : 0 < lambda) (φ : higgsVec) :
0 ≤ lambda * ‖φ‖ ^ 4 := by
rw [mul_nonneg_iff]