feat: Add unitary rep
This commit is contained in:
parent
0619e74d6c
commit
8fd0b63edb
2 changed files with 103 additions and 0 deletions
|
@ -8,6 +8,8 @@ import Mathlib.Geometry.Manifold.VectorBundle.Basic
|
||||||
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
import Mathlib.Geometry.Manifold.VectorBundle.SmoothSection
|
||||||
import Mathlib.Geometry.Manifold.Instances.Real
|
import Mathlib.Geometry.Manifold.Instances.Real
|
||||||
import Mathlib.RepresentationTheory.Basic
|
import Mathlib.RepresentationTheory.Basic
|
||||||
|
import Mathlib.LinearAlgebra.Matrix.ToLin
|
||||||
|
import Mathlib.Analysis.InnerProductSpace.Adjoint
|
||||||
/-!
|
/-!
|
||||||
# The Standard Model
|
# The Standard Model
|
||||||
|
|
||||||
|
@ -29,4 +31,55 @@ abbrev spaceTime := EuclideanSpace ℝ (Fin 4)
|
||||||
abbrev guageGroup : Type := specialUnitaryGroup (Fin 3) ℂ ×
|
abbrev guageGroup : Type := specialUnitaryGroup (Fin 3) ℂ ×
|
||||||
specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
specialUnitaryGroup (Fin 2) ℂ × unitary ℂ
|
||||||
|
|
||||||
|
-- TODO: Move to MathLib.
|
||||||
|
lemma star_specialUnitary (g : specialUnitaryGroup (Fin 2) ℂ) :
|
||||||
|
star g.1 ∈ specialUnitaryGroup (Fin 2) ℂ := by
|
||||||
|
have hg := mem_specialUnitaryGroup_iff.mp g.prop
|
||||||
|
rw [@mem_specialUnitaryGroup_iff]
|
||||||
|
apply And.intro
|
||||||
|
rw [@mem_unitaryGroup_iff, star_star]
|
||||||
|
exact mem_unitaryGroup_iff'.mp hg.1
|
||||||
|
rw [star_eq_conjTranspose, det_conjTranspose, hg.2, star_one]
|
||||||
|
|
||||||
|
-- TOMOVE
|
||||||
|
@[simps!]
|
||||||
|
noncomputable def repU1Map (g : unitary ℂ) : unitaryGroup (Fin 2) ℂ :=
|
||||||
|
⟨g ^ 3 • 1, by
|
||||||
|
rw [mem_unitaryGroup_iff, smul_one_mul, show g = ⟨g.1, g.prop⟩ from rfl]
|
||||||
|
simp only [SubmonoidClass.mk_pow, Submonoid.mk_smul, star_smul, star_pow, RCLike.star_def,
|
||||||
|
star_one]
|
||||||
|
rw [smul_smul, ← mul_pow]
|
||||||
|
erw [(unitary.mem_iff.mp g.prop).2]
|
||||||
|
simp only [one_pow, one_smul]⟩
|
||||||
|
|
||||||
|
@[simps!]
|
||||||
|
noncomputable def repU1 : unitary ℂ →* unitaryGroup (Fin 2) ℂ where
|
||||||
|
toFun g := repU1Map g
|
||||||
|
map_mul' g h := by
|
||||||
|
simp only [repU1Map, Submonoid.mk_mul_mk, mul_smul_one, smul_smul, mul_comm, ← mul_pow]
|
||||||
|
map_one' := by
|
||||||
|
simp only [repU1Map, one_pow, one_smul, Submonoid.mk_eq_one]
|
||||||
|
|
||||||
|
@[simps!]
|
||||||
|
def fundamentalSU2 : specialUnitaryGroup (Fin 2) ℂ →* unitaryGroup (Fin 2) ℂ where
|
||||||
|
toFun g := ⟨g.1, g.prop.1⟩
|
||||||
|
map_mul' _ _ := Subtype.ext rfl
|
||||||
|
map_one' := Subtype.ext rfl
|
||||||
|
|
||||||
|
lemma repU1_fundamentalSU2_commute (u1 : unitary ℂ) (g : specialUnitaryGroup (Fin 2) ℂ) :
|
||||||
|
repU1 u1 * fundamentalSU2 g = fundamentalSU2 g * repU1 u1 := by
|
||||||
|
apply Subtype.ext
|
||||||
|
simp
|
||||||
|
|
||||||
|
noncomputable def higgsRepUnitary : guageGroup →* unitaryGroup (Fin 2) ℂ where
|
||||||
|
toFun g := repU1 g.2.2 * fundamentalSU2 g.2.1
|
||||||
|
map_mul' := by
|
||||||
|
intro ⟨_, a2, a3⟩ ⟨_, b2, b3⟩
|
||||||
|
change repU1 (a3 * b3) * fundamentalSU2 (a2 * b2) = _
|
||||||
|
rw [repU1.map_mul, fundamentalSU2.map_mul]
|
||||||
|
rw [mul_assoc, mul_assoc, ← mul_assoc (repU1 b3) _ _, repU1_fundamentalSU2_commute]
|
||||||
|
repeat rw [mul_assoc]
|
||||||
|
map_one' := by
|
||||||
|
simp
|
||||||
|
|
||||||
end StandardModel
|
end StandardModel
|
||||||
|
|
|
@ -55,6 +55,8 @@ instance : NormedAddCommGroup (Fin 2 → ℂ) := by
|
||||||
|
|
||||||
section higgsVec
|
section higgsVec
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` acheived by
|
/-- The continous linear map from the vector space `higgsVec` to `(Fin 2 → ℂ)` acheived by
|
||||||
casting vectors. -/
|
casting vectors. -/
|
||||||
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
def higgsVecToFin2ℂ : higgsVec →L[ℝ] (Fin 2 → ℂ) where
|
||||||
|
@ -102,6 +104,49 @@ noncomputable def higgsRep : Representation ℂ guageGroup higgsVec where
|
||||||
|
|
||||||
namespace higgsVec
|
namespace higgsVec
|
||||||
|
|
||||||
|
/-- An orthonomral basis of higgsVec. -/
|
||||||
|
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ higgsVec :=
|
||||||
|
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||||
|
|
||||||
|
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||||||
|
@[simps!]
|
||||||
|
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (higgsVec →L[ℂ] higgsVec) where
|
||||||
|
toFun g := LinearMap.toContinuousLinearMap
|
||||||
|
$ Matrix.toLin orthonormBasis.toBasis orthonormBasis.toBasis g
|
||||||
|
map_mul' g h := ContinuousLinearMap.coe_inj.mp $
|
||||||
|
Matrix.toLin_mul orthonormBasis.toBasis orthonormBasis.toBasis orthonormBasis.toBasis g h
|
||||||
|
map_one' := ContinuousLinearMap.coe_inj.mp $ Matrix.toLin_one orthonormBasis.toBasis
|
||||||
|
|
||||||
|
lemma matrixToLin_star (g : Matrix (Fin 2) (Fin 2) ℂ) :
|
||||||
|
matrixToLin (star g) = star (matrixToLin g) :=
|
||||||
|
ContinuousLinearMap.coe_inj.mp (Matrix.toLin_conjTranspose orthonormBasis orthonormBasis g)
|
||||||
|
|
||||||
|
lemma matrixToLin_unitary (g : unitaryGroup (Fin 2) ℂ) :
|
||||||
|
matrixToLin g ∈ unitary (higgsVec →L[ℂ] higgsVec) := by
|
||||||
|
rw [@unitary.mem_iff, ← matrixToLin_star, ← matrixToLin.map_mul, ← matrixToLin.map_mul]
|
||||||
|
rw [mem_unitaryGroup_iff.mp g.prop, mem_unitaryGroup_iff'.mp g.prop, matrixToLin.map_one]
|
||||||
|
simp
|
||||||
|
|
||||||
|
noncomputable def unitaryToLin : unitaryGroup (Fin 2) ℂ →* unitary (higgsVec →L[ℂ] higgsVec) where
|
||||||
|
toFun g := ⟨matrixToLin g, matrixToLin_unitary g⟩
|
||||||
|
map_mul' g h := by
|
||||||
|
ext
|
||||||
|
simp
|
||||||
|
map_one' := by
|
||||||
|
ext
|
||||||
|
simp
|
||||||
|
|
||||||
|
@[simps!]
|
||||||
|
def unitToLinear : unitary (higgsVec →L[ℂ] higgsVec) →* higgsVec →ₗ[ℂ] higgsVec :=
|
||||||
|
DistribMulAction.toModuleEnd ℂ higgsVec
|
||||||
|
|
||||||
|
@[simps!]
|
||||||
|
def rep : Representation ℂ guageGroup higgsVec :=
|
||||||
|
unitToLinear.comp (unitaryToLin.comp higgsRepUnitary)
|
||||||
|
|
||||||
|
lemma norm_invariant (g : guageGroup) (φ : higgsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||||
|
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||||
|
|
||||||
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
/-- Given a vector `ℂ²` the constant higgs field with value equal to that
|
||||||
section. -/
|
section. -/
|
||||||
noncomputable def toField (φ : higgsVec) : higgsField where
|
noncomputable def toField (φ : higgsVec) : higgsField where
|
||||||
|
@ -115,6 +160,11 @@ noncomputable def toField (φ : higgsVec) : higgsField where
|
||||||
def potential (μSq lambda : ℝ) (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 +
|
def potential (μSq lambda : ℝ) (φ : higgsVec) : ℝ := - μSq * ‖φ‖ ^ 2 +
|
||||||
lambda * ‖φ‖ ^ 4
|
lambda * ‖φ‖ ^ 4
|
||||||
|
|
||||||
|
lemma potential_invariant (μSq lambda : ℝ) (φ : higgsVec) (g : guageGroup) :
|
||||||
|
potential μSq lambda (rep g φ) = potential μSq lambda φ := by
|
||||||
|
simp only [potential, neg_mul]
|
||||||
|
rw [norm_invariant]
|
||||||
|
|
||||||
lemma potential_snd_term_nonneg {lambda : ℝ} (hLam : 0 < lambda) (φ : higgsVec) :
|
lemma potential_snd_term_nonneg {lambda : ℝ} (hLam : 0 < lambda) (φ : higgsVec) :
|
||||||
0 ≤ lambda * ‖φ‖ ^ 4 := by
|
0 ≤ lambda * ‖φ‖ ^ 4 := by
|
||||||
rw [mul_nonneg_iff]
|
rw [mul_nonneg_iff]
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue