refactor: Some proof clean up

This commit is contained in:
jstoobysmith 2024-10-20 13:18:18 +00:00
parent 224cc2f195
commit 90436cc2ba
4 changed files with 2 additions and 6 deletions

View file

@ -85,7 +85,6 @@ lemma δa₂_δ₁ (j : Fin n) : δa₂ j = δ₁ j.succ := by
exact Nat.add_comm 1 ↑j
lemma δa₂_δ!₁ (j : Fin n) : δa₂ j = δ!₁ j.castSucc := by
rw [Fin.ext_iff]
rfl
lemma δa₃_δ₃ : @δa₃ n = δ₃ := by

View file

@ -36,9 +36,7 @@ lemma exists_plane_exists_basis {n : } (hE : ExistsPlane n) :
have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) =
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x) := by
apply Finset.sum_congr
simp only
intro i _
simp
rfl
rw [h1] at hg
have h2 : ∑ a₁ : Fin 11, g (Sum.inl a₁) • Y (Sum.inl a₁) = 0 := by
apply hB2

View file

@ -55,7 +55,7 @@ lemma ext (ψ ψ' : ContrModule) (h : ψ.val = ψ'.val) : ψ = ψ' := by
cases ψ
cases ψ'
subst h
simp_all only
rfl
@[simp]
lemma val_add (ψ ψ' : ContrModule) : (ψ + ψ').val = ψ.val + ψ'.val := rfl

View file

@ -83,7 +83,6 @@ lemma off_diag_zero {μ ν : Fin 1 ⊕ Fin d} (h : μ ≠ ν) : η μ ν = 0 :=
exact diagonal_apply_ne _ h
lemma inl_0_inl_0 : @minkowskiMatrix d (Sum.inl 0) (Sum.inl 0) = 1 := by
simp only [minkowskiMatrix, LieAlgebra.Orthogonal.indefiniteDiagonal]
rfl
lemma inr_i_inr_i (i : Fin d) : @minkowskiMatrix d (Sum.inr i) (Sum.inr i) = -1 := by