feat: Add contr_contr theorem

This commit is contained in:
jstoobysmith 2024-10-19 08:33:49 +00:00
parent 0bbc3f4019
commit 90dd337aab
5 changed files with 257 additions and 154 deletions

View file

@ -68,7 +68,7 @@ lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
omega
lemma predAbove_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
lemma predAboveI_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
y = predAboveI i x ↔ i.succAbove y = x := by
apply Iff.intro
· intro h
@ -87,6 +87,7 @@ lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
simp [predAboveI, h]
omega
lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
i.succAbove (j.succAbove x) =
(i.succAbove j).succAbove ((predAboveI (i.succAbove j) i).succAbove x) := by