feat: Add contr_contr theorem
This commit is contained in:
parent
0bbc3f4019
commit
90dd337aab
5 changed files with 257 additions and 154 deletions
|
@ -68,7 +68,7 @@ lemma succsAbove_predAboveI {i x : Fin n.succ.succ} (h : i ≠ x) :
|
|||
omega
|
||||
|
||||
|
||||
lemma predAbove_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
|
||||
lemma predAboveI_eq_iff {i x : Fin n.succ.succ} (h : i ≠ x) (y : Fin n.succ) :
|
||||
y = predAboveI i x ↔ i.succAbove y = x := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
|
@ -87,6 +87,7 @@ lemma predAboveI_ge {i x : Fin n.succ.succ} (h : i.val < x.val) :
|
|||
simp [predAboveI, h]
|
||||
omega
|
||||
|
||||
|
||||
lemma succAbove_succAbove_predAboveI (i : Fin n.succ.succ) (j : Fin n.succ) (x : Fin n) :
|
||||
i.succAbove (j.succAbove x) =
|
||||
(i.succAbove j).succAbove ((predAboveI (i.succAbove j) i).succAbove x) := by
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue