Update LineInPlaneCond.lean
This commit is contained in:
parent
1da2fd1738
commit
90deb528a2
1 changed files with 2 additions and 2 deletions
|
@ -12,7 +12,7 @@ import Mathlib.RepresentationTheory.Basic
|
||||||
/-!
|
/-!
|
||||||
# Line in plane condition
|
# Line in plane condition
|
||||||
|
|
||||||
We say a `LinSol` satifies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
|
We say a `LinSol` satisfies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
|
||||||
`Fin n`, we have
|
`Fin n`, we have
|
||||||
`S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`.
|
`S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`.
|
||||||
|
|
||||||
|
@ -21,7 +21,7 @@ The main reference for this material is
|
||||||
|
|
||||||
- https://arxiv.org/pdf/1912.04804.pdf
|
- https://arxiv.org/pdf/1912.04804.pdf
|
||||||
|
|
||||||
We will show that `n ≥ 4` the `line in plane` condition on solutions inplies the
|
We will show that `n ≥ 4` the `line in plane` condition on solutions implies the
|
||||||
`constAbs` condition.
|
`constAbs` condition.
|
||||||
|
|
||||||
-/
|
-/
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue