feat: Add SuperCommute for FieldOpAlgebra
This commit is contained in:
parent
c2d89cc093
commit
9107115620
5 changed files with 708 additions and 9 deletions
|
@ -191,5 +191,241 @@ lemma ι_superCommute_ofCrAnState_ofCrAnState_mem_center (φ ψ : 𝓕.CrAnState
|
|||
rw [← h0]
|
||||
abel
|
||||
|
||||
/-!
|
||||
|
||||
## The kernal of ι
|
||||
-/
|
||||
|
||||
lemma ι_eq_zero_iff_mem_ideal (x : CrAnAlgebra 𝓕) :
|
||||
ι x = 0 ↔ x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||||
rw [ι_apply]
|
||||
change ⟦x⟧ = ⟦0⟧ ↔ _
|
||||
simp only [ringConGen, Quotient.eq]
|
||||
rw [TwoSidedIdeal.mem_iff]
|
||||
simp only
|
||||
rfl
|
||||
|
||||
lemma bosonicProj_mem_fieldOpIdealSet_or_zero (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||||
x.bosonicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.bosonicProj = 0 := by
|
||||
have hx' := hx
|
||||
simp [fieldOpIdealSet] at hx
|
||||
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
|
||||
⟨φ, φ', hdiff, rfl⟩
|
||||
· rcases superCommute_superCommute_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h
|
||||
· left
|
||||
rw [bosonicProj_of_mem_bosonic _ h]
|
||||
simpa using hx'
|
||||
· right
|
||||
rw [bosonicProj_of_mem_fermionic _ h]
|
||||
· rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φc φc' with h | h
|
||||
· left
|
||||
rw [bosonicProj_of_mem_bosonic _ h]
|
||||
simpa using hx'
|
||||
· right
|
||||
rw [bosonicProj_of_mem_fermionic _ h]
|
||||
· rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φa φa' with h | h
|
||||
· left
|
||||
rw [bosonicProj_of_mem_bosonic _ h]
|
||||
simpa using hx'
|
||||
· right
|
||||
rw [bosonicProj_of_mem_fermionic _ h]
|
||||
· rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ φ' with h | h
|
||||
· left
|
||||
rw [bosonicProj_of_mem_bosonic _ h]
|
||||
simpa using hx'
|
||||
· right
|
||||
rw [bosonicProj_of_mem_fermionic _ h]
|
||||
|
||||
|
||||
lemma fermionicProj_mem_fieldOpIdealSet_or_zero (x : CrAnAlgebra 𝓕) (hx : x ∈ 𝓕.fieldOpIdealSet) :
|
||||
x.fermionicProj.1 ∈ 𝓕.fieldOpIdealSet ∨ x.fermionicProj = 0 := by
|
||||
have hx' := hx
|
||||
simp [fieldOpIdealSet] at hx
|
||||
rcases hx with ⟨φ1, φ2, φ3, rfl⟩ | ⟨φc, φc', hφc, hφc', rfl⟩ | ⟨φa, φa', hφa, hφa', rfl⟩ |
|
||||
⟨φ, φ', hdiff, rfl⟩
|
||||
· rcases superCommute_superCommute_ofCrAnState_bosonic_or_fermionic φ1 φ2 φ3 with h | h
|
||||
· right
|
||||
rw [fermionicProj_of_mem_bosonic _ h]
|
||||
· left
|
||||
rw [fermionicProj_of_mem_fermionic _ h]
|
||||
simpa using hx'
|
||||
· rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φc φc' with h | h
|
||||
· right
|
||||
rw [fermionicProj_of_mem_bosonic _ h]
|
||||
· left
|
||||
rw [fermionicProj_of_mem_fermionic _ h]
|
||||
simpa using hx'
|
||||
· rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φa φa' with h | h
|
||||
· right
|
||||
rw [fermionicProj_of_mem_bosonic _ h]
|
||||
· left
|
||||
rw [fermionicProj_of_mem_fermionic _ h]
|
||||
simpa using hx'
|
||||
· rcases superCommute_ofCrAnState_ofCrAnState_bosonic_or_fermionic φ φ' with h | h
|
||||
· right
|
||||
rw [fermionicProj_of_mem_bosonic _ h]
|
||||
· left
|
||||
rw [fermionicProj_of_mem_fermionic _ h]
|
||||
simpa using hx'
|
||||
|
||||
lemma bosonicProj_mem_ideal (x : CrAnAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||||
x.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure] at hx
|
||||
let p {k : Set 𝓕.CrAnAlgebra} (a : CrAnAlgebra 𝓕) (h : a ∈ AddSubgroup.closure k) : Prop :=
|
||||
a.bosonicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet
|
||||
change p x hx
|
||||
apply AddSubgroup.closure_induction
|
||||
· intro x hx
|
||||
simp [p]
|
||||
obtain ⟨a, ha, b, hb, rfl⟩ := Set.mem_mul.mp hx
|
||||
obtain ⟨d, hd, y, hy, rfl⟩ := Set.mem_mul.mp ha
|
||||
rw [bosonicProj_mul, bosonicProj_mul, fermionicProj_mul]
|
||||
simp [mul_add, add_mul]
|
||||
rcases fermionicProj_mem_fieldOpIdealSet_or_zero y hy with hfy | hfy
|
||||
<;> rcases bosonicProj_mem_fieldOpIdealSet_or_zero y hy with hby | hby
|
||||
· apply TwoSidedIdeal.add_mem
|
||||
apply TwoSidedIdeal.add_mem
|
||||
· /- boson, boson, boson mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(bosonicProj d) * ↑(bosonicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use bosonicProj d
|
||||
simp
|
||||
use (bosonicProj y).1
|
||||
simp [hby]
|
||||
· use ↑(bosonicProj b)
|
||||
simp
|
||||
· /- fermion, fermion, boson mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(fermionicProj d) * ↑(fermionicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use fermionicProj d
|
||||
simp
|
||||
use (fermionicProj y).1
|
||||
simp [hby, hfy]
|
||||
· use ↑(bosonicProj b)
|
||||
simp
|
||||
apply TwoSidedIdeal.add_mem
|
||||
· /- boson, fermion, fermion mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(bosonicProj d) * ↑(fermionicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use bosonicProj d
|
||||
simp
|
||||
use (fermionicProj y).1
|
||||
simp [hby, hfy]
|
||||
· use ↑(fermionicProj b)
|
||||
simp
|
||||
· /- fermion, boson, fermion mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(fermionicProj d) * ↑(bosonicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use fermionicProj d
|
||||
simp
|
||||
use (bosonicProj y).1
|
||||
simp [hby, hfy]
|
||||
· use ↑(fermionicProj b)
|
||||
simp
|
||||
· simp [hby]
|
||||
apply TwoSidedIdeal.add_mem
|
||||
· /- fermion, fermion, boson mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(fermionicProj d) * ↑(fermionicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use fermionicProj d
|
||||
simp
|
||||
use (fermionicProj y).1
|
||||
simp [hby, hfy]
|
||||
· use ↑(bosonicProj b)
|
||||
simp
|
||||
· /- boson, fermion, fermion mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(bosonicProj d) * ↑(fermionicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use bosonicProj d
|
||||
simp
|
||||
use (fermionicProj y).1
|
||||
simp [hby, hfy]
|
||||
· use ↑(fermionicProj b)
|
||||
simp
|
||||
· simp [hfy]
|
||||
apply TwoSidedIdeal.add_mem
|
||||
· /- boson, boson, boson mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(bosonicProj d) * ↑(bosonicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use bosonicProj d
|
||||
simp
|
||||
use (bosonicProj y).1
|
||||
simp [hby]
|
||||
· use ↑(bosonicProj b)
|
||||
simp
|
||||
· /- fermion, boson, fermion mem-/
|
||||
rw [TwoSidedIdeal.mem_span_iff_mem_addSubgroup_closure]
|
||||
refine Set.mem_of_mem_of_subset ?_ AddSubgroup.subset_closure
|
||||
apply Set.mem_mul.mpr
|
||||
use ↑(fermionicProj d) * ↑(bosonicProj y)
|
||||
apply And.intro
|
||||
· apply Set.mem_mul.mpr
|
||||
use fermionicProj d
|
||||
simp
|
||||
use (bosonicProj y).1
|
||||
simp [hby, hfy]
|
||||
· use ↑(fermionicProj b)
|
||||
simp
|
||||
· simp [hfy, hby]
|
||||
· simp [p]
|
||||
· intro x y hx hy hpx hpy
|
||||
simp_all [p]
|
||||
apply TwoSidedIdeal.add_mem
|
||||
exact hpx
|
||||
exact hpy
|
||||
· intro x hx
|
||||
simp [p]
|
||||
|
||||
lemma fermionicProj_mem_ideal (x : CrAnAlgebra 𝓕) (hx : x ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) :
|
||||
x.fermionicProj.1 ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet := by
|
||||
have hb := bosonicProj_mem_ideal x hx
|
||||
rw [← ι_eq_zero_iff_mem_ideal] at hx hb ⊢
|
||||
rw [← bosonicProj_add_fermionicProj x] at hx
|
||||
simp at hx
|
||||
simp_all
|
||||
|
||||
lemma ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero (x : CrAnAlgebra 𝓕) :
|
||||
ι x = 0 ↔ ι x.bosonicProj.1 = 0 ∧ ι x.fermionicProj.1 = 0 := by
|
||||
apply Iff.intro
|
||||
· intro h
|
||||
rw [@ι_eq_zero_iff_mem_ideal] at h ⊢
|
||||
rw [ι_eq_zero_iff_mem_ideal]
|
||||
apply And.intro
|
||||
· exact bosonicProj_mem_ideal x h
|
||||
· exact fermionicProj_mem_ideal x h
|
||||
· intro h
|
||||
rw [← bosonicProj_add_fermionicProj x]
|
||||
simp_all
|
||||
|
||||
|
||||
|
||||
end FieldOpAlgebra
|
||||
end FieldSpecification
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue