feat: Add SuperCommute for FieldOpAlgebra
This commit is contained in:
parent
c2d89cc093
commit
9107115620
5 changed files with 708 additions and 9 deletions
|
@ -0,0 +1,114 @@
|
|||
/-
|
||||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Algebras.CrAnAlgebra.TimeOrder
|
||||
import HepLean.PerturbationTheory.Algebras.FieldOpAlgebra.Basic
|
||||
/-!
|
||||
|
||||
# SuperCommute on Field operator algebra
|
||||
|
||||
-/
|
||||
|
||||
namespace FieldSpecification
|
||||
open CrAnAlgebra
|
||||
open HepLean.List
|
||||
open FieldStatistic
|
||||
|
||||
namespace FieldOpAlgebra
|
||||
variable {𝓕 : FieldSpecification}
|
||||
|
||||
lemma ι_superCommute_eq_zero_of_ι_right_zero (a b : 𝓕.CrAnAlgebra) (h : ι b = 0) :
|
||||
ι [a, b]ₛca = 0 := by
|
||||
rw [superCommute_expand_bosonicProj_fermionicProj]
|
||||
rw [ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero] at h
|
||||
simp_all
|
||||
|
||||
lemma ι_superCommute_eq_zero_of_ι_left_zero (a b : 𝓕.CrAnAlgebra) (h : ι a = 0) :
|
||||
ι [a, b]ₛca = 0 := by
|
||||
rw [superCommute_expand_bosonicProj_fermionicProj]
|
||||
rw [ι_eq_zero_iff_ι_bosonicProj_fermonicProj_zero] at h
|
||||
simp_all
|
||||
|
||||
/-!
|
||||
|
||||
## Defining normal order for `FiedOpAlgebra`.
|
||||
|
||||
-/
|
||||
|
||||
lemma ι_superCommute_right_zero_of_mem_ideal (a b : 𝓕.CrAnAlgebra)
|
||||
(h : b ∈ TwoSidedIdeal.span 𝓕.fieldOpIdealSet) : ι [a, b]ₛca = 0 := by
|
||||
apply ι_superCommute_eq_zero_of_ι_right_zero
|
||||
exact (ι_eq_zero_iff_mem_ideal b).mpr h
|
||||
|
||||
lemma ι_superCommute_eq_of_equiv_right (a b1 b2 : 𝓕.CrAnAlgebra) (h : b1 ≈ b2) :
|
||||
ι [a, b1]ₛca = ι [a, b2]ₛca := by
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
rw [LinearMap.sub_mem_ker_iff.mp]
|
||||
simp only [LinearMap.mem_ker, ← map_sub]
|
||||
exact ι_superCommute_right_zero_of_mem_ideal a (b1 - b2) h
|
||||
|
||||
noncomputable def superCommuteRight (a : 𝓕.CrAnAlgebra) : FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift (ι.toLinearMap ∘ₗ CrAnAlgebra.superCommute a) (ι_superCommute_eq_of_equiv_right a)
|
||||
map_add' x y := by
|
||||
obtain ⟨x, hx⟩ := ι_surjective x
|
||||
obtain ⟨y, hy⟩ := ι_surjective y
|
||||
subst hx hy
|
||||
rw [← map_add, ι_apply, ι_apply, ι_apply]
|
||||
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
|
||||
simp
|
||||
map_smul' c y := by
|
||||
obtain ⟨y, hy⟩ := ι_surjective y
|
||||
subst hy
|
||||
rw [← map_smul, ι_apply, ι_apply]
|
||||
simp
|
||||
|
||||
lemma superCommuteRight_apply_ι (a b : 𝓕.CrAnAlgebra) : superCommuteRight a (ι b) = ι [a, b]ₛca := by
|
||||
rfl
|
||||
|
||||
lemma superCommuteRight_apply_quot (a b : 𝓕.CrAnAlgebra) : superCommuteRight a ⟦b⟧= ι [a, b]ₛca := by
|
||||
rfl
|
||||
|
||||
lemma superCommuteRight_eq_of_equiv (a1 a2 : 𝓕.CrAnAlgebra) (h : a1 ≈ a2) :
|
||||
superCommuteRight a1 = superCommuteRight a2 := by
|
||||
rw [equiv_iff_sub_mem_ideal] at h
|
||||
ext b
|
||||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||||
have ha1b1 : (superCommuteRight (a1 - a2)) (ι b) = 0 := by
|
||||
rw [superCommuteRight_apply_ι]
|
||||
apply ι_superCommute_eq_zero_of_ι_left_zero
|
||||
exact (ι_eq_zero_iff_mem_ideal (a1 - a2)).mpr h
|
||||
simp_all [superCommuteRight_apply_ι]
|
||||
trans ι ((superCommute a2) b) + 0
|
||||
rw [← ha1b1]
|
||||
simp
|
||||
simp
|
||||
|
||||
noncomputable def superCommute : FieldOpAlgebra 𝓕 →ₗ[ℂ]
|
||||
FieldOpAlgebra 𝓕 →ₗ[ℂ] FieldOpAlgebra 𝓕 where
|
||||
toFun := Quotient.lift superCommuteRight superCommuteRight_eq_of_equiv
|
||||
map_add' x y := by
|
||||
obtain ⟨x, rfl⟩ := ι_surjective x
|
||||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||||
ext b
|
||||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||||
rw [← map_add, ι_apply, ι_apply, ι_apply, ι_apply]
|
||||
rw [Quotient.lift_mk, Quotient.lift_mk, Quotient.lift_mk]
|
||||
simp
|
||||
rw [superCommuteRight_apply_quot, superCommuteRight_apply_quot, superCommuteRight_apply_quot]
|
||||
simp
|
||||
map_smul' c y := by
|
||||
obtain ⟨y, rfl⟩ := ι_surjective y
|
||||
ext b
|
||||
obtain ⟨b, rfl⟩ := ι_surjective b
|
||||
rw [← map_smul, ι_apply, ι_apply, ι_apply]
|
||||
simp
|
||||
rw [superCommuteRight_apply_quot, superCommuteRight_apply_quot]
|
||||
simp
|
||||
|
||||
lemma ι_superCommute (a b : 𝓕.CrAnAlgebra) : ι [a, b]ₛca = superCommute (ι a) (ι b) := by
|
||||
rfl
|
||||
|
||||
end FieldOpAlgebra
|
||||
end FieldSpecification
|
Loading…
Add table
Add a link
Reference in a new issue