feat: Lemmas regarding duals for real Lorentz tensors
This commit is contained in:
parent
cfcdb880c3
commit
92b1266d70
1 changed files with 19 additions and 0 deletions
|
@ -147,6 +147,12 @@ instance (d : ℕ) : DecidableEq (realLorentzTensor d).C := realLorentzTensor.in
|
|||
@[simp]
|
||||
lemma C_eq_color {d : ℕ} : (realLorentzTensor d).C = Color := rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Simplyfing repDim
|
||||
|
||||
-/
|
||||
|
||||
lemma repDim_up {d : ℕ} : (realLorentzTensor d).repDim Color.up = 1 + d := rfl
|
||||
|
||||
lemma repDim_down {d : ℕ} : (realLorentzTensor d).repDim Color.down = 1 + d := rfl
|
||||
|
@ -157,6 +163,19 @@ lemma repDim_eq_one_plus_dim {d : ℕ} {c : (realLorentzTensor d).C} :
|
|||
cases c
|
||||
· rfl
|
||||
· rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Simplyfing τ
|
||||
|
||||
-/
|
||||
|
||||
@[simp]
|
||||
lemma τ_up_eq_down {d : ℕ} : (realLorentzTensor d).τ Color.up = Color.down := rfl
|
||||
|
||||
@[simp]
|
||||
lemma τ_down_eq_up {d : ℕ} : (realLorentzTensor d).τ Color.down = Color.up := rfl
|
||||
|
||||
/-!
|
||||
|
||||
## Simplification of contractions with respect to basis
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue