refactor: Results for bispinors
This commit is contained in:
parent
d5fe9c0db6
commit
933d34bd54
1 changed files with 7 additions and 12 deletions
|
@ -45,17 +45,14 @@ def contrBispinorUp (p : complexContr) :=
|
|||
|
||||
/-- A bispinor `pₐₐ` created from a lorentz vector `p^μ`. -/
|
||||
def contrBispinorDown (p : complexContr) :=
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
contrBispinorUp p | α β}ᵀ.tensor
|
||||
{εL' | α α' ⊗ εR' | β β' ⊗ contrBispinorUp p | α β}ᵀ.tensor
|
||||
|
||||
/-- A bispinor `pᵃᵃ` created from a lorentz vector `p_μ`. -/
|
||||
def coBispinorUp (p : complexCo) :=
|
||||
{pauliContr | μ α β ⊗ p | μ}ᵀ.tensor
|
||||
def coBispinorUp (p : complexCo) := {pauliContr | μ α β ⊗ p | μ}ᵀ.tensor
|
||||
|
||||
/-- A bispinor `pₐₐ` created from a lorentz vector `p_μ`. -/
|
||||
def coBispinorDown (p : complexCo) :=
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
coBispinorUp p | α β}ᵀ.tensor
|
||||
{εL' | α α' ⊗ εR' | β β' ⊗ coBispinorUp p | α β}ᵀ.tensor
|
||||
|
||||
/-!
|
||||
|
||||
|
@ -71,8 +68,7 @@ lemma tensorNode_contrBispinorUp (p : complexContr) :
|
|||
/-- The definitional tensor node relation for `contrBispinorDown`. -/
|
||||
lemma tensorNode_contrBispinorDown (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β'
|
||||
⊗ contrBispinorUp p | α β}ᵀ.tensor := by
|
||||
{εL' | α α' ⊗ εR' | β β' ⊗ contrBispinorUp p | α β}ᵀ.tensor := by
|
||||
rw [contrBispinorDown, tensorNode_tensor]
|
||||
|
||||
/-- The definitional tensor node relation for `coBispinorUp`. -/
|
||||
|
@ -83,8 +79,7 @@ lemma tensorNode_coBispinorUp (p : complexCo) :
|
|||
/-- The definitional tensor node relation for `coBispinorDown`. -/
|
||||
lemma tensorNode_coBispinorDown (p : complexCo) :
|
||||
{coBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β'
|
||||
⊗ coBispinorUp p | α β}ᵀ.tensor := by
|
||||
{εL' | α α' ⊗ εR' | β β' ⊗ coBispinorUp p | α β}ᵀ.tensor := by
|
||||
rw [coBispinorDown, tensorNode_tensor]
|
||||
|
||||
/-!
|
||||
|
@ -95,14 +90,14 @@ lemma tensorNode_coBispinorDown (p : complexCo) :
|
|||
|
||||
lemma contrBispinorDown_expand (p : complexContr) :
|
||||
{contrBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
{εL' | α α' ⊗ εR' | β β' ⊗
|
||||
(pauliCo | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_contrBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_contrBispinorUp p]
|
||||
|
||||
lemma coBispinorDown_expand (p : complexCo) :
|
||||
{coBispinorDown p | α β}ᵀ.tensor =
|
||||
{Fermion.altLeftMetric | α α' ⊗ Fermion.altRightMetric | β β' ⊗
|
||||
{εL' | α α' ⊗ εR' | β β' ⊗
|
||||
(pauliContr | μ α β ⊗ p | μ)}ᵀ.tensor := by
|
||||
rw [tensorNode_coBispinorDown p]
|
||||
rw [contr_tensor_eq <| contr_tensor_eq <| prod_tensor_eq_snd <| tensorNode_coBispinorUp p]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue