feat: Static Wick theorem
This commit is contained in:
parent
c421746f4b
commit
9372410fbc
7 changed files with 240 additions and 0 deletions
|
@ -0,0 +1,98 @@
|
|||
/-
|
||||
Copyright (c) 2025 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.WickContraction.StaticContract
|
||||
import HepLean.PerturbationTheory.WicksTheorem
|
||||
import HepLean.Meta.Remark.Basic
|
||||
/-!
|
||||
|
||||
# Static Wick's theorem
|
||||
|
||||
-/
|
||||
|
||||
namespace FieldSpecification
|
||||
variable {𝓕 : FieldSpecification}
|
||||
open CrAnAlgebra
|
||||
|
||||
open HepLean.List
|
||||
open WickContraction
|
||||
open FieldStatistic
|
||||
namespace FieldOpAlgebra
|
||||
|
||||
lemma static_wick_theorem_nil : ofFieldOpList [] = ∑ (φsΛ : WickContraction [].length),
|
||||
φsΛ.sign (𝓕 := 𝓕) • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ) := by
|
||||
simp only [ofFieldOpList, ofStateList_nil, map_one, List.length_nil]
|
||||
rw [sum_WickContraction_nil, uncontractedListGet, nil_zero_uncontractedList]
|
||||
simp [sign, empty, staticContract]
|
||||
|
||||
theorem static_wick_theorem : (φs : List 𝓕.States) →
|
||||
ofFieldOpList φs = ∑ (φsΛ : WickContraction φs.length),
|
||||
φsΛ.sign • φsΛ.staticContract * 𝓝(ofFieldOpList [φsΛ]ᵘᶜ)
|
||||
| [] => static_wick_theorem_nil
|
||||
| φ :: φs => by
|
||||
rw [ofFieldOpList_cons]
|
||||
rw [static_wick_theorem φs]
|
||||
rw [show (φ :: φs) = φs.insertIdx (⟨0, Nat.zero_lt_succ φs.length⟩ : Fin φs.length.succ) φ
|
||||
from rfl]
|
||||
conv_rhs => rw [insertLift_sum ]
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr rfl
|
||||
intro c _
|
||||
trans (sign φs c • ↑c.staticContract * (ofFieldOp φ * normalOrder (ofFieldOpList [c]ᵘᶜ)))
|
||||
· have ht := Subalgebra.mem_center_iff.mp (Subalgebra.smul_mem (Subalgebra.center ℂ _)
|
||||
(c.staticContract).2 c.sign )
|
||||
conv_rhs => rw [← mul_assoc, ← ht]
|
||||
simp [mul_assoc]
|
||||
rw [ofFieldOp_mul_normalOrder_ofFieldOpList_eq_sum]
|
||||
rw [Finset.mul_sum]
|
||||
rw [uncontractedStatesEquiv_list_sum]
|
||||
refine Finset.sum_congr rfl (fun n _ => ?_)
|
||||
match n with
|
||||
| none =>
|
||||
simp [uncontractedStatesEquiv, contractStateAtIndex]
|
||||
erw [sign_insert_none_zero]
|
||||
rfl
|
||||
| some n =>
|
||||
simp
|
||||
rw [normalOrder_uncontracted_some]
|
||||
simp [← mul_assoc]
|
||||
rw [← smul_mul_assoc]
|
||||
conv_rhs => rw [← smul_mul_assoc]
|
||||
congr 1
|
||||
rw [staticConract_insertAndContract_some_eq_mul_contractStateAtIndex_lt]
|
||||
swap
|
||||
· simp
|
||||
rw [smul_smul]
|
||||
by_cases hn : GradingCompliant φs c ∧ (𝓕|>ₛφ) = (𝓕|>ₛ φs[n.1])
|
||||
· congr 1
|
||||
swap
|
||||
· have h1 := c.staticContract.2
|
||||
rw [@Subalgebra.mem_center_iff] at h1
|
||||
rw [h1]
|
||||
erw [sign_insert_some]
|
||||
rw [mul_assoc, mul_comm c.sign, ← mul_assoc]
|
||||
rw [signInsertSome_mul_filter_contracted_of_not_lt]
|
||||
simp
|
||||
simp
|
||||
exact hn
|
||||
· simp at hn
|
||||
by_cases h0 : ¬ GradingCompliant φs c
|
||||
· rw [staticContract_of_not_gradingCompliant]
|
||||
simp
|
||||
exact h0
|
||||
· simp_all
|
||||
have h1 : contractStateAtIndex φ [c]ᵘᶜ ((uncontractedStatesEquiv φs c) (some n)) = 0 := by
|
||||
simp only [contractStateAtIndex, uncontractedStatesEquiv, Equiv.optionCongr_apply,
|
||||
Equiv.coe_trans, Option.map_some', Function.comp_apply, finCongr_apply,
|
||||
instCommGroup.eq_1, Fin.coe_cast, Fin.getElem_fin, smul_eq_zero]
|
||||
right
|
||||
simp [uncontractedListGet]
|
||||
rw [superCommute_anPart_ofState_diff_grade_zero]
|
||||
exact hn
|
||||
rw [h1]
|
||||
simp
|
||||
|
||||
end FieldOpAlgebra
|
||||
end FieldSpecification
|
Loading…
Add table
Add a link
Reference in a new issue