refactor: ofState rename to ofFieldOpF
This commit is contained in:
parent
08260e709c
commit
93d06895c6
12 changed files with 85 additions and 85 deletions
|
@ -21,7 +21,7 @@ The main structures defined in this module are:
|
|||
* `FieldOpFreeAlgebra` - The creation and annihilation algebra
|
||||
* `ofCrAnState` - Maps a creation/annihilation state to the algebra
|
||||
* `ofCrAnList` - Maps a list of creation/annihilation states to the algebra
|
||||
* `ofState` - Maps a state to a sum of creation and annihilation operators
|
||||
* `ofFieldOpF` - Maps a state to a sum of creation and annihilation operators
|
||||
* `crPartF` - The creation part of a state in the algebra
|
||||
* `anPartF` - The annihilation part of a state in the algebra
|
||||
* `superCommuteF` - The super commutator on the algebra
|
||||
|
@ -66,13 +66,13 @@ lemma ofCrAnList_singleton (φ : 𝓕.CrAnStates) :
|
|||
|
||||
/-- Maps a state to the sum of creation and annihilation operators in
|
||||
creation and annihilation free-algebra. -/
|
||||
def ofState (φ : 𝓕.States) : FieldOpFreeAlgebra 𝓕 :=
|
||||
def ofFieldOpF (φ : 𝓕.States) : FieldOpFreeAlgebra 𝓕 :=
|
||||
∑ (i : 𝓕.statesToCrAnType φ), ofCrAnState ⟨φ, i⟩
|
||||
|
||||
/-- Maps a list of states to the creation and annihilation free-algebra by taking
|
||||
the product of their sums of creation and annihlation operators.
|
||||
Roughly `[φ1, φ2]` gets sent to `(φ1ᶜ+ φ1ᵃ) * (φ2ᶜ+ φ2ᵃ)` etc. -/
|
||||
def ofFieldOpListF (φs : List 𝓕.States) : FieldOpFreeAlgebra 𝓕 := (List.map ofState φs).prod
|
||||
def ofFieldOpListF (φs : List 𝓕.States) : FieldOpFreeAlgebra 𝓕 := (List.map ofFieldOpF φs).prod
|
||||
|
||||
/-- Coercion from `List 𝓕.States` to `FieldOpFreeAlgebra 𝓕` through `ofFieldOpListF`. -/
|
||||
instance : Coe (List 𝓕.States) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF⟩
|
||||
|
@ -81,10 +81,10 @@ instance : Coe (List 𝓕.States) (FieldOpFreeAlgebra 𝓕) := ⟨ofFieldOpListF
|
|||
lemma ofFieldOpListF_nil : ofFieldOpListF ([] : List 𝓕.States) = 1 := rfl
|
||||
|
||||
lemma ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
ofFieldOpListF (φ :: φs) = ofState φ * ofFieldOpListF φs := rfl
|
||||
ofFieldOpListF (φ :: φs) = ofFieldOpF φ * ofFieldOpListF φs := rfl
|
||||
|
||||
lemma ofFieldOpListF_singleton (φ : 𝓕.States) :
|
||||
ofFieldOpListF [φ] = ofState φ := by simp [ofFieldOpListF]
|
||||
ofFieldOpListF [φ] = ofFieldOpF φ := by simp [ofFieldOpListF]
|
||||
|
||||
lemma ofFieldOpListF_append (φs φs' : List 𝓕.States) :
|
||||
ofFieldOpListF (φs ++ φs') = ofFieldOpListF φs * ofFieldOpListF φs' := by
|
||||
|
@ -160,9 +160,9 @@ lemma anPartF_posAsymp (φ : 𝓕.OutgoingAsymptotic) :
|
|||
anPartF (States.outAsymp φ) = ofCrAnState ⟨States.outAsymp φ, ()⟩ := by
|
||||
simp [anPartF]
|
||||
|
||||
lemma ofState_eq_crPartF_add_anPartF (φ : 𝓕.States) :
|
||||
ofState φ = crPartF φ + anPartF φ := by
|
||||
rw [ofState]
|
||||
lemma ofFieldOpF_eq_crPartF_add_anPartF (φ : 𝓕.States) :
|
||||
ofFieldOpF φ = crPartF φ + anPartF φ := by
|
||||
rw [ofFieldOpF]
|
||||
cases φ with
|
||||
| inAsymp φ => simp [statesToCrAnType]
|
||||
| position φ => simp [statesToCrAnType, CreateAnnihilate.sum_eq]
|
||||
|
|
|
@ -367,14 +367,14 @@ lemma normalOrderF_anPartF_mul_crPartF (φ φ' : 𝓕.States) :
|
|||
rw [← mul_assoc, normalOrderF_swap_anPartF_crPartF]
|
||||
simp
|
||||
|
||||
lemma normalOrderF_ofState_mul_ofState (φ φ' : 𝓕.States) :
|
||||
𝓝ᶠ(ofState φ * ofState φ') =
|
||||
lemma normalOrderF_ofFieldOpF_mul_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
𝓝ᶠ(ofFieldOpF φ * ofFieldOpF φ') =
|
||||
crPartF φ * crPartF φ' +
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') •
|
||||
(crPartF φ' * anPartF φ) +
|
||||
crPartF φ * anPartF φ' +
|
||||
anPartF φ * anPartF φ' := by
|
||||
rw [ofState_eq_crPartF_add_anPartF, ofState_eq_crPartF_add_anPartF, mul_add, add_mul, add_mul]
|
||||
rw [ofFieldOpF_eq_crPartF_add_anPartF, ofFieldOpF_eq_crPartF_add_anPartF, mul_add, add_mul, add_mul]
|
||||
simp only [map_add, normalOrderF_crPartF_mul_crPartF, normalOrderF_anPartF_mul_crPartF,
|
||||
instCommGroup.eq_1, normalOrderF_crPartF_mul_anPartF, normalOrderF_anPartF_mul_anPartF]
|
||||
abel
|
||||
|
|
|
@ -57,7 +57,7 @@ lemma superCommuteF_ofCrAnState_ofCrAnState (φ φ' : 𝓕.CrAnStates) :
|
|||
rw [ofCrAnList_append]
|
||||
rw [FieldStatistic.ofList_singleton, FieldStatistic.ofList_singleton, smul_mul_assoc]
|
||||
|
||||
lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_ofCrAnList_ofFieldOpFsList (φcas : List 𝓕.CrAnStates) (φs : List 𝓕.States) :
|
||||
[ofCrAnList φcas, ofFieldOpListF φs]ₛca = ofCrAnList φcas * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φcas, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofCrAnList φcas := by
|
||||
conv_lhs => rw [ofFieldOpListF_sum]
|
||||
|
@ -70,7 +70,7 @@ lemma superCommuteF_ofCrAnList_ofStatesList (φcas : List 𝓕.CrAnStates) (φs
|
|||
← Finset.sum_mul, ← ofFieldOpListF_sum]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofFieldOpListF_ofStatesList (φ : List 𝓕.States) (φs : List 𝓕.States) :
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpFsList (φ : List 𝓕.States) (φs : List 𝓕.States) :
|
||||
[ofFieldOpListF φ, ofFieldOpListF φs]ₛca = ofFieldOpListF φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpListF φ := by
|
||||
conv_lhs => rw [ofFieldOpListF_sum]
|
||||
|
@ -78,21 +78,21 @@ lemma superCommuteF_ofFieldOpListF_ofStatesList (φ : List 𝓕.States) (φs : L
|
|||
Algebra.smul_mul_assoc]
|
||||
conv_lhs =>
|
||||
enter [2, x]
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList]
|
||||
rw [superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
simp only [instCommGroup.eq_1, CrAnSection.statistics_eq_state_statistics,
|
||||
Algebra.smul_mul_assoc, Finset.sum_sub_distrib]
|
||||
rw [← Finset.sum_mul, ← Finset.smul_sum, ← Finset.mul_sum, ← ofFieldOpListF_sum]
|
||||
|
||||
lemma superCommuteF_ofState_ofStatesList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[ofState φ, ofFieldOpListF φs]ₛca = ofState φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofState φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofStatesList, ofFieldOpListF_singleton]
|
||||
lemma superCommuteF_ofFieldOpF_ofFieldOpFsList (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
[ofFieldOpF φ, ofFieldOpListF φs]ₛca = ofFieldOpF φ * ofFieldOpListF φs -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs) • ofFieldOpListF φs * ofFieldOpF φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList, ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_ofFieldOpListF_ofState (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
[ofFieldOpListF φs, ofState φ]ₛca = ofFieldOpListF φs * ofState φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofFieldOpListF φs := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofStatesList, ofFieldOpListF_singleton]
|
||||
lemma superCommuteF_ofFieldOpListF_ofFieldOpF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
[ofFieldOpListF φs, ofFieldOpF φ]ₛca = ofFieldOpListF φs * ofFieldOpF φ -
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofFieldOpListF_ofFieldOpFsList, ofFieldOpListF_singleton]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_crPartF (φ φ' : 𝓕.States) :
|
||||
|
@ -209,11 +209,11 @@ lemma superCommuteF_crPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
match φ with
|
||||
| States.inAsymp φ =>
|
||||
simp only [crPartF_negAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
| States.position φ =>
|
||||
simp only [crPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
| States.outAsymp φ =>
|
||||
simp
|
||||
|
@ -227,24 +227,24 @@ lemma superCommuteF_anPartF_ofFieldOpListF (φ : 𝓕.States) (φs : List 𝓕.S
|
|||
simp
|
||||
| States.position φ =>
|
||||
simp only [anPartF_position, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
| States.outAsymp φ =>
|
||||
simp only [anPartF_posAsymp, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofStatesList]
|
||||
rw [← ofCrAnList_singleton, superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
simp [crAnStatistics]
|
||||
|
||||
lemma superCommuteF_crPartF_ofState (φ φ' : 𝓕.States) :
|
||||
[crPartF φ, ofState φ']ₛca =
|
||||
crPartF φ * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * crPartF φ := by
|
||||
lemma superCommuteF_crPartF_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
[crPartF φ, ofFieldOpF φ']ₛca =
|
||||
crPartF φ * ofFieldOpF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOpF φ' * crPartF φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_crPartF_ofFieldOpListF]
|
||||
simp
|
||||
|
||||
lemma superCommuteF_anPartF_ofState (φ φ' : 𝓕.States) :
|
||||
[anPartF φ, ofState φ']ₛca =
|
||||
anPartF φ * ofState φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofState φ' * anPartF φ := by
|
||||
lemma superCommuteF_anPartF_ofFieldOpF (φ φ' : 𝓕.States) :
|
||||
[anPartF φ, ofFieldOpF φ']ₛca =
|
||||
anPartF φ * ofFieldOpF φ' -
|
||||
𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φ') • ofFieldOpF φ' * anPartF φ := by
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_anPartF_ofFieldOpListF]
|
||||
simp
|
||||
|
||||
|
@ -271,19 +271,19 @@ lemma ofCrAnState_mul_ofCrAnList_eq_superCommuteF (φ : 𝓕.CrAnStates) (φs' :
|
|||
lemma ofFieldOpListF_mul_ofFieldOpListF_eq_superCommuteF (φs φs' : List 𝓕.States) :
|
||||
ofFieldOpListF φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofStatesList]
|
||||
rw [superCommuteF_ofFieldOpListF_ofFieldOpFsList]
|
||||
simp
|
||||
|
||||
lemma ofState_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
|
||||
ofState φ * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofState φ
|
||||
+ [ofState φ, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofState_ofStatesList]
|
||||
lemma ofFieldOpF_mul_ofFieldOpListF_eq_superCommuteF (φ : 𝓕.States) (φs' : List 𝓕.States) :
|
||||
ofFieldOpF φ * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofFieldOpF φ
|
||||
+ [ofFieldOpF φ, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofFieldOpF_ofFieldOpFsList]
|
||||
simp
|
||||
|
||||
lemma ofFieldOpListF_mul_ofState_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
ofFieldOpListF φs * ofState φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofState φ]ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofState]
|
||||
lemma ofFieldOpListF_mul_ofFieldOpF_eq_superCommuteF (φs : List 𝓕.States) (φ : 𝓕.States) :
|
||||
ofFieldOpListF φs * ofFieldOpF φ = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * ofFieldOpListF φs
|
||||
+ [ofFieldOpListF φs, ofFieldOpF φ]ₛca := by
|
||||
rw [superCommuteF_ofFieldOpListF_ofFieldOpF]
|
||||
simp
|
||||
|
||||
lemma crPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
||||
|
@ -317,7 +317,7 @@ lemma anPartF_mul_anPartF_eq_superCommuteF (φ φ' : 𝓕.States) :
|
|||
lemma ofCrAnList_mul_ofFieldOpListF_eq_superCommuteF (φs : List 𝓕.CrAnStates) (φs' : List 𝓕.States) :
|
||||
ofCrAnList φs * ofFieldOpListF φs' = 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs') • ofFieldOpListF φs' * ofCrAnList φs
|
||||
+ [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList]
|
||||
rw [superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
simp
|
||||
|
||||
/-!
|
||||
|
@ -379,19 +379,19 @@ lemma superCommuteF_ofCrAnList_ofCrAnList_cons (φ : 𝓕.CrAnStates) (φs φs'
|
|||
|
||||
lemma superCommuteF_ofCrAnList_ofFieldOpListF_cons (φ : 𝓕.States) (φs : List 𝓕.CrAnStates)
|
||||
(φs' : List 𝓕.States) : [ofCrAnList φs, ofFieldOpListF (φ :: φs')]ₛca =
|
||||
[ofCrAnList φs, ofState φ]ₛca * ofFieldOpListF φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofState φ * [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList]
|
||||
[ofCrAnList φs, ofFieldOpF φ]ₛca * ofFieldOpListF φs' +
|
||||
𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φ) • ofFieldOpF φ * [ofCrAnList φs, ofFieldOpListF φs']ₛca := by
|
||||
rw [superCommuteF_ofCrAnList_ofFieldOpFsList]
|
||||
conv_rhs =>
|
||||
lhs
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofCrAnList_ofStatesList, sub_mul, mul_assoc,
|
||||
rw [← ofFieldOpListF_singleton, superCommuteF_ofCrAnList_ofFieldOpFsList, sub_mul, mul_assoc,
|
||||
← ofFieldOpListF_append]
|
||||
rhs
|
||||
rw [FieldStatistic.ofList_singleton, ofFieldOpListF_singleton, smul_mul_assoc,
|
||||
smul_mul_assoc, mul_assoc]
|
||||
conv_rhs =>
|
||||
rhs
|
||||
rw [superCommuteF_ofCrAnList_ofStatesList, mul_sub, smul_mul_assoc]
|
||||
rw [superCommuteF_ofCrAnList_ofFieldOpFsList, mul_sub, smul_mul_assoc]
|
||||
simp only [instCommGroup, Algebra.smul_mul_assoc, List.singleton_append, Algebra.mul_smul_comm,
|
||||
sub_add_sub_cancel, sub_right_inj]
|
||||
rw [ofFieldOpListF_cons, mul_assoc, smul_smul, FieldStatistic.ofList_cons_eq_mul]
|
||||
|
@ -420,10 +420,10 @@ lemma superCommuteF_ofCrAnList_ofCrAnList_eq_sum (φs : List 𝓕.CrAnStates) :
|
|||
lemma superCommuteF_ofCrAnList_ofFieldOpListF_eq_sum (φs : List 𝓕.CrAnStates) : (φs' : List 𝓕.States) →
|
||||
[ofCrAnList φs, ofFieldOpListF φs']ₛca =
|
||||
∑ (n : Fin φs'.length), 𝓢(𝓕 |>ₛ φs, 𝓕 |>ₛ φs'.take n) •
|
||||
ofFieldOpListF (φs'.take n) * [ofCrAnList φs, ofState (φs'.get n)]ₛca *
|
||||
ofFieldOpListF (φs'.take n) * [ofCrAnList φs, ofFieldOpF (φs'.get n)]ₛca *
|
||||
ofFieldOpListF (φs'.drop (n + 1))
|
||||
| [] => by
|
||||
simp only [superCommuteF_ofCrAnList_ofStatesList, instCommGroup, ofList_empty,
|
||||
simp only [superCommuteF_ofCrAnList_ofFieldOpFsList, instCommGroup, ofList_empty,
|
||||
exchangeSign_bosonic, one_smul, List.length_nil, Finset.univ_eq_empty, List.take_nil,
|
||||
List.get_eq_getElem, List.drop_nil, Finset.sum_empty]
|
||||
simp
|
||||
|
|
|
@ -119,27 +119,27 @@ lemma timeOrderF_ofFieldOpListF_nil : timeOrderF (𝓕 := 𝓕) (ofFieldOpListF
|
|||
lemma timeOrderF_ofFieldOpListF_singleton (φ : 𝓕.States) : 𝓣ᶠ(ofFieldOpListF [φ]) = ofFieldOpListF [φ] := by
|
||||
simp [timeOrderF_ofFieldOpListF, timeOrderSign, timeOrderList]
|
||||
|
||||
lemma timeOrderF_ofState_ofState_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofState φ * ofState ψ) = ofState φ * ofState ψ := by
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_ordered {φ ψ : 𝓕.States} (h : timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofFieldOpF φ * ofFieldOpF ψ) = ofFieldOpF φ * ofFieldOpF ψ := by
|
||||
rw [← ofFieldOpListF_singleton, ← ofFieldOpListF_singleton, ← ofFieldOpListF_append,
|
||||
timeOrderF_ofFieldOpListF]
|
||||
simp only [List.singleton_append]
|
||||
rw [timeOrderSign_pair_ordered h, timeOrderList_pair_ordered h]
|
||||
simp
|
||||
|
||||
lemma timeOrderF_ofState_ofState_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofState ψ * ofState φ := by
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered {φ ψ : 𝓕.States} (h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofFieldOpF φ * ofFieldOpF ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • ofFieldOpF ψ * ofFieldOpF φ := by
|
||||
rw [← ofFieldOpListF_singleton, ← ofFieldOpListF_singleton,
|
||||
← ofFieldOpListF_append, timeOrderF_ofFieldOpListF]
|
||||
simp only [List.singleton_append, instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
rw [timeOrderSign_pair_not_ordered h, timeOrderList_pair_not_ordered h]
|
||||
simp [← ofFieldOpListF_append]
|
||||
|
||||
lemma timeOrderF_ofState_ofState_not_ordered_eq_timeOrderF {φ ψ : 𝓕.States}
|
||||
lemma timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered_eq_timeOrderF {φ ψ : 𝓕.States}
|
||||
(h : ¬ timeOrderRel φ ψ) :
|
||||
𝓣ᶠ(ofState φ * ofState ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣ᶠ(ofState ψ * ofState φ) := by
|
||||
rw [timeOrderF_ofState_ofState_not_ordered h]
|
||||
rw [timeOrderF_ofState_ofState_ordered]
|
||||
𝓣ᶠ(ofFieldOpF φ * ofFieldOpF ψ) = 𝓢(𝓕 |>ₛ φ, 𝓕 |>ₛ ψ) • 𝓣ᶠ(ofFieldOpF ψ * ofFieldOpF φ) := by
|
||||
rw [timeOrderF_ofFieldOpF_ofFieldOpF_not_ordered h]
|
||||
rw [timeOrderF_ofFieldOpF_ofFieldOpF_ordered]
|
||||
simp only [instCommGroup.eq_1, Algebra.smul_mul_assoc]
|
||||
have hx := IsTotal.total (r := timeOrderRel) ψ φ
|
||||
simp_all
|
||||
|
@ -300,7 +300,7 @@ lemma timeOrderF_superCommuteF_ofCrAnState_ofCrAnState_eq_time
|
|||
lemma timeOrderF_eq_maxTimeField_mul (φ : 𝓕.States) (φs : List 𝓕.States) :
|
||||
𝓣ᶠ(ofFieldOpListF (φ :: φs)) =
|
||||
𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ (φ :: φs).take (maxTimeFieldPos φ φs)) •
|
||||
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
ofFieldOpF (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
rw [timeOrderF_ofFieldOpListF, timeOrderList_eq_maxTimeField_timeOrderList]
|
||||
rw [ofFieldOpListF_cons, timeOrderF_ofFieldOpListF]
|
||||
simp only [instCommGroup.eq_1, Algebra.mul_smul_comm, Algebra.smul_mul_assoc, smul_smul]
|
||||
|
@ -316,7 +316,7 @@ lemma timeOrderF_eq_maxTimeField_mul_finset (φ : 𝓕.States) (φs : List 𝓕.
|
|||
𝓣ᶠ(ofFieldOpListF (φ :: φs)) = 𝓢(𝓕 |>ₛ maxTimeField φ φs, 𝓕 |>ₛ ⟨(eraseMaxTimeField φ φs).get,
|
||||
(Finset.filter (fun x =>
|
||||
(maxTimeFieldPosFin φ φs).succAbove x < maxTimeFieldPosFin φ φs) Finset.univ)⟩) •
|
||||
ofState (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
ofFieldOpF (maxTimeField φ φs) * 𝓣ᶠ(ofFieldOpListF (eraseMaxTimeField φ φs)) := by
|
||||
rw [timeOrderF_eq_maxTimeField_mul]
|
||||
congr 3
|
||||
apply FieldStatistic.ofList_perm
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue