feat: More informal details about Wick contract
This commit is contained in:
parent
ec6da248d8
commit
9546e1fdc5
3 changed files with 10 additions and 11 deletions
|
@ -3,6 +3,7 @@ Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
|||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.PerturbationTheory.Wick.Contract
|
||||
import HepLean.PerturbationTheory.Wick.Species
|
||||
/-!
|
||||
|
||||
|
@ -21,8 +22,12 @@ informal_definition FeynmanDiagram where
|
|||
Let S be a WickSpecies
|
||||
A Feynman diagram contains the following data:
|
||||
- A type of vertices 𝓥 → S.𝓯 ⊕ S.𝓘.
|
||||
- A type of edges 𝓔 → S.𝓕.
|
||||
- A type of half-edges 𝓱𝓔 → 𝓔 × 𝓥 × S.𝓯.
|
||||
- A type of edges ed : 𝓔 → S.𝓕.
|
||||
- A type of half-edges 𝓱𝓔 with maps `e : 𝓱𝓔 → 𝓔`, `v : 𝓱𝓔 → 𝓥` and `f : 𝓱𝓔 → S.𝓯`
|
||||
Subject to the following conditions:
|
||||
...
|
||||
"
|
||||
- `𝓱𝓔` is a double cover of `𝓔` through `e`. That is,
|
||||
for each edge `x : 𝓔` there exists an isomorphism between `i : Fin 2 → e⁻¹ 𝓱𝓔 {x}`.
|
||||
- These isomorphisms must satisfy `⟦f(i(0))⟧ = ⟦f(i(1))⟧ = ed(e)` and `f(i(0)) = S.ξ (f(i(1)))`.
|
||||
- For each vertex `ver : 𝓥` there exists an isomorphism between the object (roughly)
|
||||
`(𝓘Fields v).2` and the pullback of `v` along `ver`."
|
||||
deps :≈ [``Wick.Species]
|
||||
|
|
|
@ -124,7 +124,7 @@ informal_lemma timeOrder_pair where
|
|||
|
||||
informal_definition WickMap where
|
||||
math :≈ "A linear map `vev` from the Wick algebra `A` to the underlying field such that
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
`vev(...ψd(t)) = 0` and `vev(ψc(t)...) = 0`."
|
||||
physics :≈ "An abstraction of the notion of a vacuum expectation value, containing
|
||||
the necessary properties for lots of theorems to hold."
|
||||
deps :≈ [``WickAlgebra, ``WickMonomial]
|
||||
|
|
|
@ -51,12 +51,6 @@ informal_definition 𝓕 where
|
|||
physics :≈ "The different types of fields present in a theory."
|
||||
deps :≈ [``Species]
|
||||
|
||||
informal_definition 𝓕ToOver𝓯 where
|
||||
math :≈ "The map from `S.𝓕` to functions `Fin 2 → S.𝓯` with this function
|
||||
landing on orbits.
|
||||
This may require an order on `S.𝓯`."
|
||||
deps :≈ [``Species]
|
||||
|
||||
end Species
|
||||
|
||||
end Wick
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue