Merge pull request #174 from HEPLean/informal_defs
feat: Formalising some properties of the 2HDM
This commit is contained in:
commit
956789a669
2 changed files with 55 additions and 11 deletions
|
@ -4,6 +4,8 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.BeyondTheStandardModel.TwoHDM.Basic
|
||||
import HepLean.StandardModel.HiggsBoson.GaugeAction
|
||||
import Mathlib.LinearAlgebra.Matrix.PosDef
|
||||
/-!
|
||||
|
||||
# Gauge orbits for the 2HDM
|
||||
|
@ -14,22 +16,56 @@ The main reference for material in this section is https://arxiv.org/pdf/hep-ph/
|
|||
|
||||
namespace TwoHDM
|
||||
|
||||
informal_definition prodMatrix where
|
||||
math :≈ "For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||||
defined by ((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂)). "
|
||||
ref :≈ "https://arxiv.org/pdf/hep-ph/0605184 eq 3.8."
|
||||
deps :≈ [``StandardModel.HiggsVec, ``SpaceTime]
|
||||
open StandardModel
|
||||
open ComplexConjugate
|
||||
open HiggsField
|
||||
|
||||
informal_lemma prodMatrix_positive_semidefinite where
|
||||
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is positive semidefinite."
|
||||
deps :≈ [``prodMatrix, ``SpaceTime]
|
||||
noncomputable section
|
||||
|
||||
informal_lemma prodMatrix_hermitian where
|
||||
math :≈ "For all x in ``SpaceTime, ``prodMatrix at `x` is hermitian."
|
||||
deps :≈ [``prodMatrix, ``SpaceTime]
|
||||
/-- For two Higgs fields `Φ₁` and `Φ₂`, the map from space time to 2 x 2 complex matrices
|
||||
defined by `((Φ₁^†Φ₁, Φ₂^†Φ₁), (Φ₁^†Φ₂, Φ₂^†Φ₂))`. -/
|
||||
def prodMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
!![⟪Φ1, Φ1⟫_H x, ⟪Φ2, Φ1⟫_H x; ⟪Φ1, Φ2⟫_H x, ⟪Φ2, Φ2⟫_H x]
|
||||
|
||||
/-- The 2 x 2 complex matrices made up of components of the two Higgs fields. -/
|
||||
def fieldCompMatrix (Φ1 Φ2 : HiggsField) (x : SpaceTime) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
!![Φ1 x 0, Φ1 x 1; Φ2 x 0, Φ2 x 1]
|
||||
|
||||
/-- The matrix `prodMatrix Φ1 Φ2 x` is equal to the square of `fieldCompMatrix Φ1 Φ2 x`. -/
|
||||
lemma prodMatrix_eq_fieldCompMatrix_sq (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||||
prodMatrix Φ1 Φ2 x = fieldCompMatrix Φ1 Φ2 x * (fieldCompMatrix Φ1 Φ2 x).conjTranspose := by
|
||||
rw [fieldCompMatrix]
|
||||
trans !![Φ1 x 0, Φ1 x 1; Φ2 x 0, Φ2 x 1] *
|
||||
!![conj (Φ1 x 0), conj (Φ2 x 0); conj (Φ1 x 1), conj (Φ2 x 1)]
|
||||
· rw [Matrix.mul_fin_two, prodMatrix, innerProd_expand', innerProd_expand', innerProd_expand',
|
||||
innerProd_expand']
|
||||
funext i j
|
||||
fin_cases i <;> fin_cases j <;> ring_nf
|
||||
· funext i j
|
||||
fin_cases i <;> fin_cases j <;> rfl
|
||||
|
||||
/-- An instance of `PartialOrder` on `ℂ` defined through `Complex.partialOrder`. -/
|
||||
local instance : PartialOrder ℂ := Complex.partialOrder
|
||||
|
||||
/-- The matrix `prodMatrix` is positive semi-definite. -/
|
||||
lemma prodMatrix_posSemiDef (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||||
(prodMatrix Φ1 Φ2 x).PosSemidef := by
|
||||
rw [Matrix.posSemidef_iff_eq_transpose_mul_self]
|
||||
use (fieldCompMatrix Φ1 Φ2 x).conjTranspose
|
||||
simpa using prodMatrix_eq_fieldCompMatrix_sq Φ1 Φ2 x
|
||||
|
||||
/-- The matrix `prodMatrix` is hermitian. -/
|
||||
lemma prodMatrix_hermitian (Φ1 Φ2 : HiggsField) (x : SpaceTime) :
|
||||
(prodMatrix Φ1 Φ2 x).IsHermitian := (prodMatrix_posSemiDef Φ1 Φ2 x).isHermitian
|
||||
|
||||
informal_lemma prodMatrix_smooth where
|
||||
math :≈ "The map ``prodMatrix is a smooth function on spacetime."
|
||||
deps :≈ [``prodMatrix]
|
||||
|
||||
informal_lemma prodMatrix_invariant where
|
||||
math :≈ "The map ``prodMatrix is invariant under the simultanous action of ``gaugeAction
|
||||
on the two Higgs fields."
|
||||
deps :≈ [``prodMatrix, ``gaugeAction]
|
||||
|
||||
end
|
||||
end TwoHDM
|
||||
|
|
|
@ -66,6 +66,14 @@ lemma innerProd_right_zero (φ : HiggsField) : ⟪φ, 0⟫_H = 0 := by
|
|||
funext x
|
||||
simp [innerProd]
|
||||
|
||||
/-- Expands the inner product on Higgs fields in terms of complex components of the
|
||||
Higgs fields. -/
|
||||
lemma innerProd_expand' (φ1 φ2 : HiggsField) (x : SpaceTime) :
|
||||
⟪φ1, φ2⟫_H x = conj (φ1 x 0) * φ2 x 0 + conj (φ1 x 1) * φ2 x 1 := by
|
||||
simp [innerProd]
|
||||
|
||||
/-- Expands the inner product on Higgs fields in terms of real components of the
|
||||
Higgs fields. -/
|
||||
lemma innerProd_expand (φ1 φ2 : HiggsField) :
|
||||
⟪φ1, φ2⟫_H = fun x => equivRealProdCLM.symm (((φ1 x 0).re * (φ2 x 0).re
|
||||
+ (φ1 x 1).re * (φ2 x 1).re+ (φ1 x 0).im * (φ2 x 0).im + (φ1 x 1).im * (φ2 x 1).im),
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue