From 95857993b5c9fa329adc546dbd30ae8ae3d4ae76 Mon Sep 17 00:00:00 2001 From: jstoobysmith <72603918+jstoobysmith@users.noreply.github.com> Date: Thu, 24 Oct 2024 06:10:08 +0000 Subject: [PATCH] refactor: Simplify proofs --- .../LorentzVector/Complex/Basic.lean | 1 - HepLean/Tensors/ComplexLorentz/Basic.lean | 1 - HepLean/Tensors/ComplexLorentz/Basis.lean | 33 +- HepLean/Tensors/ComplexLorentz/Lemmas.lean | 824 +++++++----------- HepLean/Tensors/OverColor/Lift.lean | 1 - HepLean/Tensors/Tree/Basic.lean | 2 +- 6 files changed, 366 insertions(+), 496 deletions(-) diff --git a/HepLean/SpaceTime/LorentzVector/Complex/Basic.lean b/HepLean/SpaceTime/LorentzVector/Complex/Basic.lean index 20cf861..b59a393 100644 --- a/HepLean/SpaceTime/LorentzVector/Complex/Basic.lean +++ b/HepLean/SpaceTime/LorentzVector/Complex/Basic.lean @@ -88,7 +88,6 @@ lemma complexCoBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 1 ⊕ Fin 3) : def complexCoBasisFin4 : Basis (Fin 4) ℂ complexCo := Basis.reindex complexCoBasis finSumFinEquiv - /-! ## Relation to real diff --git a/HepLean/Tensors/ComplexLorentz/Basic.lean b/HepLean/Tensors/ComplexLorentz/Basic.lean index 067b2b9..8c4a0a0 100644 --- a/HepLean/Tensors/ComplexLorentz/Basic.lean +++ b/HepLean/Tensors/ComplexLorentz/Basic.lean @@ -184,6 +184,5 @@ lemma basis_contr (c : complexLorentzTensor.C) (i : Fin (complexLorentzTensor.re | Color.up => Lorentz.contrCoContraction_basis _ _ | Color.down => Lorentz.coContrContraction_basis _ _ - end end Fermion diff --git a/HepLean/Tensors/ComplexLorentz/Basis.lean b/HepLean/Tensors/ComplexLorentz/Basis.lean index ec707a7..54ab11f 100644 --- a/HepLean/Tensors/ComplexLorentz/Basis.lean +++ b/HepLean/Tensors/ComplexLorentz/Basis.lean @@ -79,11 +79,32 @@ lemma perm_basisVector {n m : ℕ} {c : Fin n → complexLorentzTensor.C} eqToIso.hom, Functor.mapIso_inv, eqToIso.inv, LinearEquiv.ofLinear_apply] rw [basis_eq_FDiscrete] +def contrBasisVectorMul {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C} + (i : Fin n.succ.succ) (j : Fin n.succ) + (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : ℂ := + (if (b i).val = (b (i.succAbove j)).val then (1 : ℂ) else 0) + +lemma contrBasisVectorMul_neg {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C} + {i : Fin n.succ.succ} {j : Fin n.succ} {b : Π k, Fin (complexLorentzTensor.repDim (c k))} + (h : ¬ (b i).val = (b (i.succAbove j)).val := by decide) : + contrBasisVectorMul i j b = 0 := by + rw [contrBasisVectorMul] + simp + exact h + +lemma contrBasisVectorMul_pos {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C} + {i : Fin n.succ.succ} {j : Fin n.succ} {b : Π k, Fin (complexLorentzTensor.repDim (c k))} + (h : (b i).val = (b (i.succAbove j)).val := by decide) : + contrBasisVectorMul i j b = 1 := by + rw [contrBasisVectorMul] + simp + exact h + lemma contr_basisVector {n : ℕ} {c : Fin n.succ.succ → complexLorentzTensor.C} {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)} (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : - (contr i j h (tensorNode (basisVector c b))).tensor = (if (b i).val = (b (i.succAbove j)).val - then (1 : ℂ) else 0) • basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j) + (contr i j h (tensorNode (basisVector c b))).tensor = (contrBasisVectorMul i j b) • + basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j) (fun k => b (i.succAbove (j.succAbove k))) := by rw [contr_tensor] simp only [Nat.succ_eq_add_one, tensorNode_tensor] @@ -102,8 +123,7 @@ lemma contr_basisVector_tree {n : ℕ} {c : Fin n.succ.succ → complexLorentzT {i : Fin n.succ.succ} {j : Fin n.succ} {h : c (i.succAbove j) = complexLorentzTensor.τ (c i)} (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : (contr i j h (tensorNode (basisVector c b))).tensor = - (smul ((if (b i).val = (b (i.succAbove j)).val - then (1 : ℂ) else 0)) (tensorNode ( basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j) + (smul (contrBasisVectorMul i j b) (tensorNode ( basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j) (fun k => b (i.succAbove (j.succAbove k)))) )).tensor := by exact contr_basisVector _ @@ -113,7 +133,7 @@ lemma contr_basisVector_tree_pos {n : ℕ} {c : Fin n.succ.succ → complexLore (contr i j h (tensorNode (basisVector c b))).tensor = ((tensorNode ( basisVector (c ∘ Fin.succAbove i ∘ Fin.succAbove j) (fun k => b (i.succAbove (j.succAbove k)))))).tensor := by - rw [contr_basisVector_tree] + rw [contr_basisVector_tree, contrBasisVectorMul] rw [if_pos hn] simp [smul_tensor] @@ -122,10 +142,11 @@ lemma contr_basisVector_tree_neg {n : ℕ} {c : Fin n.succ.succ → complexLore (b : Π k, Fin (complexLorentzTensor.repDim (c k))) (hn : ¬ (b i).val = (b (i.succAbove j)).val := by decide) : (contr i j h (tensorNode (basisVector c b))).tensor = (tensorNode 0).tensor := by - rw [contr_basisVector_tree] + rw [contr_basisVector_tree, contrBasisVectorMul] rw [if_neg hn] simp [smul_tensor] + def prodBasisVecEquiv {n m : ℕ} {c : Fin n → complexLorentzTensor.C} {c1 : Fin m → complexLorentzTensor.C} (i : Fin n ⊕ Fin m) : Sum.elim (fun i => Fin (complexLorentzTensor.repDim (c i))) (fun i => Fin (complexLorentzTensor.repDim (c1 i))) diff --git a/HepLean/Tensors/ComplexLorentz/Lemmas.lean b/HepLean/Tensors/ComplexLorentz/Lemmas.lean index c8378f6..772ad51 100644 --- a/HepLean/Tensors/ComplexLorentz/Lemmas.lean +++ b/HepLean/Tensors/ComplexLorentz/Lemmas.lean @@ -119,7 +119,7 @@ And related results. -/ open complexLorentzTensor -def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm +def leftMetricMulRightMap := (Sum.elim ![Color.upL, Color.upL] ![Color.upR, Color.upR]) ∘ finSumFinEquiv.symm lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.rightMetric | β β'}ᵀ.tensor = basisVector leftMetricMulRightMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) @@ -153,23 +153,64 @@ lemma leftMetric_mul_rightMetric : {Fermion.leftMetric | α α' ⊗ Fermion.righ funext x fin_cases x <;> rfl - def pauliMatrixLowerMap := ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1) abbrev pauliMatrixContrMap {n : ℕ} (c : Fin n → complexLorentzTensor.C) := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) -lemma pauliMatrix_contr_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} +lemma prod_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} + (t : TensorTree complexLorentzTensor c) : + (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor)).tensor = (((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add + (((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add + (((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add + (((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add + ((TensorTree.smul (-I) ((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 0 | 2 => 1))))).add + ((TensorTree.smul I ((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 2 | 1 => 1 | 2 => 0))))).add + ((t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0))).add + (TensorTree.smul (-1) (t.prod (tensorNode + (basisVector ![Color.up, Color.upL, Color.upR] + fun | 0 => 3 | 1 => 1 | 2 => 1))))))))))).tensor := by + rw [prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree] + rw [prod_add _ _ _] + rw [add_tensor_eq_snd <| prod_add _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| + prod_add _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd + <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd + <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] + /- Moving smuls. -/ + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd + <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd + <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd + <| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd + <| add_tensor_eq_snd <| prod_smul _ _ _] + rfl + + +lemma contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (t : TensorTree complexLorentzTensor c) (i : Fin (n + 3)) (j : Fin (n +2)) (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) : (contr i j h (TensorTree.prod t (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR - PauliMatrix.asConsTensor))).tensor = ( - (contr i j h (t.prod (tensorNode + PauliMatrix.asConsTensor))).tensor = + ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 0 | 2 => 0)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 0 | 1 => 1 | 2 => 1)))).add ((contr i j h (t.prod (tensorNode - (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add + (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 0 | 2 => 1)))).add ((contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 1 | 1 => 1 | 2 => 0)))).add ((TensorTree.smul (-I) (contr i j h (t.prod (tensorNode @@ -180,26 +221,7 @@ lemma pauliMatrix_contr_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 0 | 2 => 0)))).add (TensorTree.smul (-1) (contr i j h (t.prod (tensorNode (basisVector ![Color.up, Color.upL, Color.upR] fun | 0 => 3 | 1 => 1 | 2 => 1)))))))))))).tensor := by - rw [contr_tensor_eq <| prod_tensor_eq_snd <| pauliMatrix_basis_expand_tree] - rw [contr_tensor_eq <| prod_add _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| prod_add _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| prod_add _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| prod_add _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| prod_add _ _ _] - /- Moving smuls. -/ - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| prod_smul _ _ _] - rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd<| add_tensor_eq_snd - <| add_tensor_eq_snd <| prod_smul _ _ _] + rw [contr_tensor_eq <| prod_pauliMatrix_basis_tree_expand _] /- Moving contr over add. -/ rw [contr_add] rw [add_tensor_eq_snd <| contr_add _ _] @@ -213,21 +235,32 @@ lemma pauliMatrix_contr_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] /- Moving contr over smul. -/ rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| + add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] - rfl -lemma pauliMatrix_contr_down_0 : - (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod - (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR - PauliMatrix.asConsTensor)))).tensor - = basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0) - + basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by - rw [pauliMatrix_contr_expand] +lemma basis_contr_pauliMatrix_basis_tree_expand' {n : ℕ} {c : Fin n → complexLorentzTensor.C} + (i : Fin (n + 3)) (j : Fin (n +2)) + (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) + (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : + let c' := Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm + let b' (i1 i2 i3 : Fin 4) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) + ((HepLean.PiTensorProduct.elimPureTensor b (fun | 0 => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) + (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor))).tensor = ((contr i j h ((tensorNode + (basisVector c' (b' 0 0 0))))).add + ((contr i j h ((tensorNode (basisVector c' (b' 0 1 1))))).add + ((contr i j h ((tensorNode (basisVector c' (b' 1 0 1))))).add + ((contr i j h ((tensorNode (basisVector c' (b' 1 1 0))))).add + ((TensorTree.smul (-I) (contr i j h ((tensorNode (basisVector c' (b' 2 0 1)))))).add + ((TensorTree.smul I (contr i j h ((tensorNode (basisVector c' (b' 2 1 0)))))).add + ((contr i j h ((tensorNode (basisVector c' (b' 3 0 0))))).add + (TensorTree.smul (-1) (contr i j h ((tensorNode + (basisVector c' (b' 3 1 1))))))))))))).tensor := by + rw [contr_pauliMatrix_basis_tree_expand] /- Product of basis vectors . -/ rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] @@ -240,32 +273,68 @@ lemma pauliMatrix_contr_down_0 : rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] + rfl + +lemma basis_contr_pauliMatrix_basis_tree_expand {n : ℕ} {c : Fin n → complexLorentzTensor.C} + (i : Fin (n + 3)) (j : Fin (n +2)) + (h : (pauliMatrixContrMap c) (i.succAbove j) = complexLorentzTensor.τ ((pauliMatrixContrMap c) i)) + (b : Π k, Fin (complexLorentzTensor.repDim (c k))) : + let c' := (Sum.elim c ![Color.up, Color.upL, Color.upR] ∘ finSumFinEquiv.symm) + ∘ Fin.succAbove i ∘ Fin.succAbove j + let b'' (i1 i2 i3 : Fin 4) : (i : Fin (n + (Nat.succ 0).succ.succ)) → + Fin (complexLorentzTensor.repDim (Sum.elim c ![Color.up, Color.upL, Color.upR] (finSumFinEquiv.symm i))) := fun i => prodBasisVecEquiv (finSumFinEquiv.symm i) + ((HepLean.PiTensorProduct.elimPureTensor b (fun | (0 : Fin 3) => i1 | 1 => i2 | 2 => i3)) (finSumFinEquiv.symm i)) + let b' (i1 i2 i3 : Fin 4) := fun k => (b'' i1 i2 i3) (i.succAbove (j.succAbove k)) + (contr i j h (TensorTree.prod (tensorNode (basisVector c b)) + (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor))).tensor = ((( + TensorTree.smul (contrBasisVectorMul i j (b'' 0 0 0)) (tensorNode (basisVector c' (b' 0 0 0))))).add + (((TensorTree.smul (contrBasisVectorMul i j (b'' 0 1 1)) (tensorNode (basisVector c' (b' 0 1 1))))).add + (((TensorTree.smul (contrBasisVectorMul i j (b'' 1 0 1)) (tensorNode (basisVector c' (b' 1 0 1))))).add + (((TensorTree.smul (contrBasisVectorMul i j (b'' 1 1 0)) (tensorNode (basisVector c' (b' 1 1 0))))).add + ((TensorTree.smul (-I) ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 0 1)) (tensorNode (basisVector c' (b' 2 0 1)))))).add + ((TensorTree.smul I ((TensorTree.smul (contrBasisVectorMul i j (b'' 2 1 0)) (tensorNode (basisVector c' (b' 2 1 0)))))).add + (((TensorTree.smul (contrBasisVectorMul i j (b'' 3 0 0)) (tensorNode (basisVector c' (b' 3 0 0))))).add + (TensorTree.smul (-1) ((TensorTree.smul (contrBasisVectorMul i j (b'' 3 1 1)) (tensorNode + (basisVector c' (b' 3 1 1))))))))))))).tensor := by + rw [basis_contr_pauliMatrix_basis_tree_expand'] /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_pos _ rfl] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ rfl] + rw [add_tensor_eq_fst <| contr_basisVector_tree _] + rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] + <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] + <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] + <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] + <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] + <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] - /- Simplifying. -/ + smul_tensor_eq <| contr_basisVector_tree _] + +lemma pauliMatrix_contr_down_0 : + (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod + (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor)))).tensor + = basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + + basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) := by + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero] + simp only [one_smul, zero_smul, smul_zero, add_zero] congr 1 · congr 1 funext k @@ -274,51 +343,28 @@ lemma pauliMatrix_contr_down_0 : funext k fin_cases k <;> rfl +lemma pauliMatrix_contr_down_0_tree : + (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 0)).prod + (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor)))).tensor + = (TensorTree.add (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) + (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1)))).tensor := by + exact pauliMatrix_contr_down_0 + lemma pauliMatrix_contr_down_1 : (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 1)).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1) + basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_pos _ rfl] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ rfl] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] - /- Simplifying. -/ + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 1 funext k @@ -341,45 +387,14 @@ lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl PauliMatrix.asConsTensor)))).tensor = (- I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1) + (I) • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k @@ -388,51 +403,30 @@ lemma pauliMatrix_contr_down_2 : (contr 0 1 rfl funext k fin_cases k <;> rfl +lemma pauliMatrix_contr_down_2_tree : (contr 0 1 rfl + (((tensorNode (basisVector ![Color.down, Color.down] fun x => 2)).prod + (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor)))).tensor = + (TensorTree.add + (smul (- I) (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) + (smul I (tensorNode (basisVector + pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))))).tensor := by + exact pauliMatrix_contr_down_2 + lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl (((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + (- 1 : ℂ) • basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_pos _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k @@ -441,6 +435,16 @@ lemma pauliMatrix_contr_down_3 : (contr 0 1 rfl funext k fin_cases k <;> rfl +lemma pauliMatrix_contr_down_3_tree : (contr 0 1 rfl + (((tensorNode (basisVector ![Color.down, Color.down] fun x => 3)).prod + (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR + PauliMatrix.asConsTensor)))).tensor = + (TensorTree.add + ((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) + (smul (-1) (tensorNode (basisVector pauliMatrixLowerMap + (fun | 0 => 3 | 1 => 1 | 2 => 1))))).tensor := by + exact pauliMatrix_contr_down_3 + def pauliMatrixContrPauliMatrixMap := ((Sum.elim ((Sum.elim ![Color.down, Color.down] ![Color.up, Color.upL, Color.upR] ∘ ⇑finSumFinEquiv.symm) ∘ Fin.succAbove 0 ∘ Fin.succAbove 1) @@ -453,45 +457,14 @@ lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 1 funext k @@ -500,50 +473,19 @@ lemma pauliMatrix_contr_lower_0_0_0 : (contr 0 2 rfl funext k fin_cases k <;> rfl -lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 1 funext k @@ -552,51 +494,19 @@ lemma pauliMatrix_contr_lower_0_1_1 : (contr 0 2 rfl funext k fin_cases k <;> rfl - -lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_pos _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 1 funext k @@ -605,50 +515,19 @@ lemma pauliMatrix_contr_lower_1_0_1 : (contr 0 2 rfl funext k fin_cases k <;> rfl -lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_pos _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 1 funext k @@ -657,51 +536,20 @@ lemma pauliMatrix_contr_lower_1_1_0 : (contr 0 2 rfl funext k fin_cases k <;> rfl -lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = (-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) + (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k @@ -710,51 +558,20 @@ lemma pauliMatrix_contr_lower_2_0_1 : (contr 0 2 rfl funext k fin_cases k <;> rfl -lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = (-I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + (I) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_neg _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos, + contrBasisVectorMul_neg, contrBasisVectorMul_neg] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k @@ -763,52 +580,21 @@ lemma pauliMatrix_contr_lower_2_1_0 : (contr 0 2 rfl funext k fin_cases k <;> rfl - -lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = - basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) - + (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_pos _] + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + + (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap + (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) := by + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k @@ -817,52 +603,20 @@ lemma pauliMatrix_contr_lower_3_0_0 : (contr 0 2 rfl funext k fin_cases k <;> rfl - -lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl +lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl (((tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1))).prod (constThreeNodeE complexLorentzTensor Color.up Color.upL Color.upR PauliMatrix.asConsTensor)))).tensor = - basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1) := by - rw [pauliMatrix_contr_expand] - /- Product of basis vectors . -/ - rw [add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_tensor_eq - <| prod_basisVector_tree _ _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq - <| contr_tensor_eq <| prod_basisVector_tree _ _] - /- Contracting basis vectors. -/ - rw [add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst - <| contr_basisVector_tree_neg _ ] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_fst <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <|add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq - <| contr_basisVector_tree_neg _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd - <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_basisVector_tree_pos _] - rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| - smul_tensor_eq <| contr_basisVector_tree_pos _] + rw [basis_contr_pauliMatrix_basis_tree_expand] + rw [contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_neg, contrBasisVectorMul_neg, + contrBasisVectorMul_pos, contrBasisVectorMul_pos] /- Simplifying. -/ simp only [smul_tensor, add_tensor, tensorNode_tensor] - simp only [smul_zero, add_zero, zero_add] + simp only [zero_smul, one_smul, smul_zero, add_zero, zero_add] congr 1 · congr 2 funext k @@ -871,18 +625,15 @@ lemma pauliMatrix_contr_lower_3_1_1 : (contr 0 2 rfl funext k fin_cases k <;> rfl - - -lemma pauliMatrix_lower : - {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor +lemma pauliMatrix_lower : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor = basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0) + basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1) - + basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1) - + basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) - - I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1) - + I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) - + basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0) - - basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by + - basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1) + - basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0) + + I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1) + - I • basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0) + - basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0) + + basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1) := by rw [contr_tensor_eq <| prod_tensor_eq_fst <| coMetric_basis_expand_tree] /- Moving the prod through additions. -/ rw [contr_tensor_eq <| add_prod _ _ _] @@ -903,16 +654,117 @@ lemma pauliMatrix_lower : rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_smul _ _] /- Replacing the contractions. -/ - sorry + rw [add_tensor_eq_fst <| pauliMatrix_contr_down_0_tree] + rw [add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_1_tree] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| pauliMatrix_contr_down_2_tree] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| smul_tensor_eq <| pauliMatrix_contr_down_3_tree] + /- Simplifying -/ + simp only [add_tensor, smul_tensor, tensorNode_tensor, smul_add,_root_.smul_smul] + simp only [Nat.reduceAdd, Fin.isValue, neg_smul, one_smul, mul_neg, neg_mul, one_mul, + _root_.neg_neg, mul_one] + rfl +lemma pauliMatrix_lower_tree : {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β}ᵀ.tensor + = (TensorTree.add (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 0 | 2 => 0))) <| + TensorTree.add (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 0 | 1 => 1 | 2 => 1))) <| + TensorTree.add (TensorTree.smul (-1) (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 0 | 2 => 1)))) <| + TensorTree.add (TensorTree.smul (-1) (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 1 | 1 => 1 | 2 => 0)))) <| + TensorTree.add (TensorTree.smul I (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 0 | 2 => 1)))) <| + TensorTree.add (TensorTree.smul (-I) (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 2 | 1 => 1 | 2 => 0)))) <| + TensorTree.add (TensorTree.smul (-1) (tensorNode + (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 0 | 2 => 0)))) <| + (tensorNode (basisVector pauliMatrixLowerMap (fun | 0 => 3 | 1 => 1 | 2 => 1)))).tensor := by + rw [pauliMatrix_lower] + simp only [Nat.reduceAdd, Fin.isValue, add_tensor, + tensorNode_tensor, smul_tensor, neg_smul, one_smul] + rfl + +lemma pauliMatrix_contract_pauliMatrix_aux : + {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor + = ((tensorNode + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + + basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1)).add + ((tensorNode + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + + basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1)).add + ((TensorTree.smul (-1) (tensorNode + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) + + basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add + ((TensorTree.smul (-1) (tensorNode + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + + basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add + ((TensorTree.smul I (tensorNode + ((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) + + I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0))).add + ((TensorTree.smul (-I) (tensorNode + ((-I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) + + I • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0))).add + ((TensorTree.smul (-1) (tensorNode + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 0 | 3 => 0) + + (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1))).add + (tensorNode + ((basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + + (-1 : ℂ) • basisVector pauliMatrixContrPauliMatrixMap fun | 0 => 1 | 1 => 1 | 2 => 1 | 3 => 1))))))))).tensor := by + rw [contr_tensor_eq <| prod_tensor_eq_fst <| pauliMatrix_lower_tree] + /- Moving the prod through additions. -/ + rw [contr_tensor_eq <| add_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_prod _ _ _] + /- Moving the prod through smuls. -/ + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] + rw [contr_tensor_eq <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_prod _ _ _] + /- Moving contraction through addition. -/ + rw [contr_add] + rw [add_tensor_eq_snd <| contr_add _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| contr_add _ _] + /- Moving contraction through smul. -/ + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| contr_smul _ _] + /- Replacing the contractions. -/ + rw [add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_0_0] + rw [add_tensor_eq_snd <| add_tensor_eq_fst <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_0_1_1] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_0_1] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_1_1_0] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_0_1] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_2_1_0] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_fst <| smul_tensor_eq <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_0_0] + rw [add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| add_tensor_eq_snd <| eq_tensorNode_of_eq_tensor <| pauliMatrix_contr_lower_3_1_1] lemma pauliMatrix_contract_pauliMatrix : - {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor - = basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 0 | 3 => 1) - - basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) - - basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) - + basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 1 | 3 => 0) := by - sorry + {Lorentz.coMetric | μ ν ⊗ PauliMatrix.asConsTensor | μ α β ⊗ PauliMatrix.asConsTensor | ν α' β'}ᵀ.tensor = + 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 0 | 2 => 1 | 3 => 1) + + 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 1 | 2 => 0 | 3 => 0) + - 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 0 | 1 => 1 | 2 => 1 | 3 => 0) + - 2 • basisVector pauliMatrixContrPauliMatrixMap (fun | 0 => 1 | 1 => 0 | 2 => 0 | 3 => 1) := by + rw [pauliMatrix_contract_pauliMatrix_aux] + simp only [Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, neg_smul, + one_smul, add_tensor, tensorNode_tensor, smul_tensor, smul_add, smul_neg, _root_.smul_smul, + neg_mul, _root_.neg_neg] + ring_nf + rw [Complex.I_sq] + simp only [ neg_smul, one_smul, _root_.neg_neg] + abel + end Fermion end diff --git a/HepLean/Tensors/OverColor/Lift.lean b/HepLean/Tensors/OverColor/Lift.lean index bbb08ec..de66c36 100644 --- a/HepLean/Tensors/OverColor/Lift.lean +++ b/HepLean/Tensors/OverColor/Lift.lean @@ -286,7 +286,6 @@ lemma μ_tmul_tprod_mk {X Y : Type} {cX : X → C} {cY : Y → C} | Sum.inl i => rfl | Sum.inr i => rfl - lemma μ_natural_left {X Y : OverColor C} (f : X ⟶ Y) (Z : OverColor C) : MonoidalCategory.whiskerRight (objMap' F f) (objObj' F Z) ≫ (μ F Y Z).hom = (μ F X Z).hom ≫ objMap' F (MonoidalCategory.whiskerRight f Z) := by diff --git a/HepLean/Tensors/Tree/Basic.lean b/HepLean/Tensors/Tree/Basic.lean index 42e19dd..63fcab3 100644 --- a/HepLean/Tensors/Tree/Basic.lean +++ b/HepLean/Tensors/Tree/Basic.lean @@ -680,7 +680,7 @@ lemma eval_tensor {n : ℕ} {c : Fin n.succ → S.C} (i : Fin n.succ) (e : ℕ) (eval i e t).tensor = (S.evalMap i (Fin.ofNat' e Fin.size_pos')) t.tensor := rfl lemma smul_tensor {c : Fin n → S.C} (a : S.k) (T : TensorTree S c) : - (smul a T).tensor = a • T.tensor:= rfl + (smul a T).tensor = a • T.tensor:= rfl /-! ## Equality of tensors and rewrites.