feat: Add linear basis and line in plane condition
This commit is contained in:
parent
bb2b7804f2
commit
96d1e87ba3
3 changed files with 352 additions and 0 deletions
|
@ -11,7 +11,9 @@ import HepLean.AnomalyCancellation.MSSMNu.PlaneY3B3Orthog
|
|||
import HepLean.AnomalyCancellation.MSSMNu.SolsParameterization
|
||||
import HepLean.AnomalyCancellation.MSSMNu.Y3
|
||||
import HepLean.AnomalyCancellation.PureU1.Basic
|
||||
import HepLean.AnomalyCancellation.PureU1.BasisLinear
|
||||
import HepLean.AnomalyCancellation.PureU1.ConstAbs
|
||||
import HepLean.AnomalyCancellation.PureU1.LineInPlaneCond
|
||||
import HepLean.AnomalyCancellation.PureU1.Permutations
|
||||
import HepLean.AnomalyCancellation.PureU1.Sort
|
||||
import HepLean.AnomalyCancellation.PureU1.VectorLike
|
||||
|
|
161
HepLean/AnomalyCancellation/PureU1/BasisLinear.lean
Normal file
161
HepLean/AnomalyCancellation/PureU1/BasisLinear.lean
Normal file
|
@ -0,0 +1,161 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.PureU1.Basic
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
/-!
|
||||
# Basis of `LinSols`
|
||||
|
||||
We give a basis of vector space `LinSols`, and find the rank thereof.
|
||||
|
||||
-/
|
||||
|
||||
namespace PureU1
|
||||
|
||||
open BigOperators
|
||||
|
||||
variable {n : ℕ}
|
||||
namespace BasisLinear
|
||||
|
||||
/-- The basis elements as charges, defined to have a `1` in the `j`th position and a `-1` in the
|
||||
last position. -/
|
||||
@[simp]
|
||||
def asCharges (j : Fin n) : (PureU1 n.succ).charges :=
|
||||
(fun i =>
|
||||
if i = j.castSucc then
|
||||
1
|
||||
else
|
||||
if i = Fin.last n then
|
||||
- 1
|
||||
else
|
||||
0)
|
||||
|
||||
lemma asCharges_eq_castSucc (j : Fin n) :
|
||||
asCharges j (Fin.castSucc j) = 1 := by
|
||||
simp [asCharges]
|
||||
|
||||
lemma asCharges_ne_castSucc {k j : Fin n} (h : k ≠ j) :
|
||||
asCharges k (Fin.castSucc j) = 0 := by
|
||||
simp [asCharges]
|
||||
split
|
||||
rename_i h1
|
||||
rw [Fin.ext_iff] at h1
|
||||
simp_all
|
||||
rw [Fin.ext_iff] at h
|
||||
simp_all
|
||||
split
|
||||
rename_i h1 h2
|
||||
rw [Fin.ext_iff] at h1 h2
|
||||
simp at h1 h2
|
||||
have hj : j.val < n := by
|
||||
exact j.prop
|
||||
simp_all
|
||||
rfl
|
||||
|
||||
/-- The basis elements as `LinSols`. -/
|
||||
@[simps!]
|
||||
def asLinSols (j : Fin n) : (PureU1 n.succ).LinSols :=
|
||||
⟨asCharges j, by
|
||||
intro i
|
||||
simp at i
|
||||
match i with
|
||||
| 0 =>
|
||||
simp only [ Fin.isValue, PureU1_linearACCs, accGrav,
|
||||
LinearMap.coe_mk, AddHom.coe_mk, Fin.coe_eq_castSucc]
|
||||
rw [Fin.sum_univ_castSucc]
|
||||
rw [Finset.sum_eq_single j]
|
||||
simp
|
||||
have hn : ¬ (Fin.last n = Fin.castSucc j) := by
|
||||
have hj := j.prop
|
||||
rw [Fin.ext_iff]
|
||||
simp
|
||||
omega
|
||||
split
|
||||
rename_i ht
|
||||
exact (hn ht).elim
|
||||
rfl
|
||||
intro k _ hkj
|
||||
exact asCharges_ne_castSucc hkj.symm
|
||||
intro hk
|
||||
simp at hk⟩
|
||||
|
||||
|
||||
lemma sum_of_vectors {n : ℕ} (f : Fin k → (PureU1 n).LinSols) (j : Fin n) :
|
||||
(∑ i : Fin k, (f i)).1 j = (∑ i : Fin k, (f i).1 j) := by
|
||||
induction k
|
||||
simp
|
||||
rfl
|
||||
rename_i k l hl
|
||||
rw [Fin.sum_univ_castSucc, Fin.sum_univ_castSucc]
|
||||
have hlt := hl (f ∘ Fin.castSucc)
|
||||
erw [← hlt]
|
||||
simp
|
||||
|
||||
/-- The coordinate map for the basis. -/
|
||||
noncomputable
|
||||
def coordinateMap : ((PureU1 n.succ).LinSols) ≃ₗ[ℚ] Fin n →₀ ℚ where
|
||||
toFun S := Finsupp.equivFunOnFinite.invFun (S.1 ∘ Fin.castSucc)
|
||||
map_add' S T := by
|
||||
simp
|
||||
ext
|
||||
simp
|
||||
map_smul' a S := by
|
||||
simp
|
||||
ext
|
||||
simp
|
||||
rfl
|
||||
invFun f := ∑ i : Fin n, f i • asLinSols i
|
||||
left_inv S := by
|
||||
simp
|
||||
apply pureU1_anomalyFree_ext
|
||||
intro j
|
||||
rw [sum_of_vectors]
|
||||
simp only [HSMul.hSMul, SMul.smul, PureU1_numberCharges,
|
||||
asLinSols_val, Equiv.toFun_as_coe,
|
||||
Fin.coe_eq_castSucc, mul_ite, mul_one, mul_neg, mul_zero, Equiv.invFun_as_coe]
|
||||
rw [Finset.sum_eq_single j]
|
||||
simp
|
||||
intro k _ hkj
|
||||
rw [asCharges_ne_castSucc hkj]
|
||||
simp
|
||||
simp
|
||||
right_inv f := by
|
||||
simp
|
||||
ext
|
||||
rename_i j
|
||||
simp
|
||||
rw [sum_of_vectors]
|
||||
simp only [HSMul.hSMul, SMul.smul, PureU1_numberCharges,
|
||||
asLinSols_val, Equiv.toFun_as_coe,
|
||||
Fin.coe_eq_castSucc, mul_ite, mul_one, mul_neg, mul_zero, Equiv.invFun_as_coe]
|
||||
rw [Finset.sum_eq_single j]
|
||||
simp
|
||||
intro k _ hkj
|
||||
rw [asCharges_ne_castSucc hkj]
|
||||
simp
|
||||
simp
|
||||
|
||||
/-- The basis of `LinSols`.-/
|
||||
noncomputable
|
||||
def asBasis : Basis (Fin n) ℚ ((PureU1 n.succ).LinSols) where
|
||||
repr := coordinateMap
|
||||
|
||||
instance : Module.Finite ℚ ((PureU1 n.succ).LinSols) :=
|
||||
Module.Finite.of_basis asBasis
|
||||
|
||||
lemma finrank_AnomalyFreeLinear :
|
||||
FiniteDimensional.finrank ℚ (((PureU1 n.succ).LinSols)) = n := by
|
||||
have h := Module.mk_finrank_eq_card_basis (@asBasis n)
|
||||
simp_all
|
||||
simp [FiniteDimensional.finrank]
|
||||
rw [h]
|
||||
simp_all only [Cardinal.toNat_natCast]
|
||||
|
||||
|
||||
end BasisLinear
|
||||
|
||||
|
||||
end PureU1
|
189
HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean
Normal file
189
HepLean/AnomalyCancellation/PureU1/LineInPlaneCond.lean
Normal file
|
@ -0,0 +1,189 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.PureU1.Basic
|
||||
import HepLean.AnomalyCancellation.PureU1.Permutations
|
||||
import HepLean.AnomalyCancellation.PureU1.VectorLike
|
||||
import HepLean.AnomalyCancellation.PureU1.ConstAbs
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
/-!
|
||||
# Line in plane condition
|
||||
|
||||
We say a `LinSol` satifies the `line in plane` condition if for all distinct `i1`, `i2`, `i3` in
|
||||
`Fin n`, we have
|
||||
`S i1 = S i2` or `S i1 = - S i2` or `2 S i3 + S i1 + S i2 = 0`.
|
||||
|
||||
We look at various consequences of this.
|
||||
The main reference for this material is
|
||||
|
||||
- https://arxiv.org/pdf/1912.04804.pdf
|
||||
|
||||
We will show that `n ≥ 4` the `line in plane` condition on solutions inplies the
|
||||
`constAbs` condition.
|
||||
|
||||
-/
|
||||
|
||||
|
||||
namespace PureU1
|
||||
|
||||
open BigOperators
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
/-- The proposition on three rationals to satisfy the `linInPlane` condition. -/
|
||||
def lineInPlaneProp : ℚ × ℚ × ℚ → Prop := fun s =>
|
||||
s.1 = s.2.1 ∨ s.1 = - s.2.1 ∨ 2 * s.2.2 + s.1 + s.2.1 = 0
|
||||
|
||||
/-- The proposition on a `LinSol` to satisfy the `linInPlane` condition. -/
|
||||
def lineInPlaneCond (S : (PureU1 (n)).LinSols) : Prop :=
|
||||
∀ (i1 i2 i3 : Fin (n)) (_ : i1 ≠ i2) (_ : i2 ≠ i3) (_ : i1 ≠ i3),
|
||||
lineInPlaneProp (S.val i1, (S.val i2, S.val i3))
|
||||
|
||||
lemma lineInPlaneCond_perm {S : (PureU1 (n)).LinSols} (hS : lineInPlaneCond S)
|
||||
(M : (FamilyPermutations n).group) :
|
||||
lineInPlaneCond ((FamilyPermutations n).linSolRep M S) := by
|
||||
intro i1 i2 i3 h1 h2 h3
|
||||
rw [FamilyPermutations_anomalyFreeLinear_apply, FamilyPermutations_anomalyFreeLinear_apply,
|
||||
FamilyPermutations_anomalyFreeLinear_apply]
|
||||
refine hS (M.invFun i1) (M.invFun i2) (M.invFun i3) ?_ ?_ ?_
|
||||
all_goals simp_all only [ne_eq, Equiv.invFun_as_coe, EmbeddingLike.apply_eq_iff_eq,
|
||||
not_false_eq_true]
|
||||
|
||||
|
||||
lemma lineInPlaneCond_eq_last' {S : (PureU1 (n.succ.succ)).LinSols} (hS : lineInPlaneCond S)
|
||||
(h : ¬ (S.val ((Fin.last n).castSucc))^2 = (S.val ((Fin.last n).succ))^2 ) :
|
||||
(2 - n) * S.val (Fin.last (n + 1)) =
|
||||
- (2 - n)* S.val (Fin.castSucc (Fin.last n)) := by
|
||||
erw [sq_eq_sq_iff_eq_or_eq_neg] at h
|
||||
rw [lineInPlaneCond] at hS
|
||||
simp only [lineInPlaneProp] at hS
|
||||
simp [not_or] at h
|
||||
have h1 (i : Fin n) : S.val i.castSucc.castSucc =
|
||||
- (S.val ((Fin.last n).castSucc) + (S.val ((Fin.last n).succ))) / 2 := by
|
||||
have h1S := hS (Fin.last n).castSucc ((Fin.last n).succ) i.castSucc.castSucc
|
||||
(by simp; rw [Fin.ext_iff]; simp; omega)
|
||||
(by simp; rw [Fin.ext_iff]; simp; omega)
|
||||
(by simp; rw [Fin.ext_iff]; simp; omega)
|
||||
simp_all
|
||||
field_simp
|
||||
linear_combination h1S
|
||||
have h2 := pureU1_last S
|
||||
rw [Fin.sum_univ_castSucc] at h2
|
||||
simp [h1] at h2
|
||||
field_simp at h2
|
||||
linear_combination h2
|
||||
|
||||
lemma lineInPlaneCond_eq_last {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
|
||||
(hS : lineInPlaneCond S) :
|
||||
constAbsProp
|
||||
((S.val ((Fin.last n.succ.succ.succ).castSucc)), (S.val ((Fin.last n.succ.succ.succ).succ)))
|
||||
:= by
|
||||
rw [constAbsProp]
|
||||
by_contra hn
|
||||
have h := lineInPlaneCond_eq_last' hS hn
|
||||
rw [sq_eq_sq_iff_eq_or_eq_neg] at hn
|
||||
simp [or_not] at hn
|
||||
have hx : ((2 : ℚ) - ↑(n + 3)) ≠ 0 := by
|
||||
rw [Nat.cast_add]
|
||||
simp
|
||||
apply Not.intro
|
||||
intro a
|
||||
linarith
|
||||
have ht : S.val ((Fin.last n.succ.succ.succ).succ) =
|
||||
- S.val ((Fin.last n.succ.succ.succ).castSucc) := by
|
||||
rw [← mul_right_inj' hx]
|
||||
simp [Nat.succ_eq_add_one]
|
||||
simp at h
|
||||
rw [h]
|
||||
ring
|
||||
simp_all
|
||||
|
||||
lemma linesInPlane_eq_sq {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
|
||||
(hS : lineInPlaneCond S) : ∀ (i j : Fin n.succ.succ.succ.succ.succ) (_ : i ≠ j),
|
||||
constAbsProp (S.val i, S.val j) := by
|
||||
have hneq : ((Fin.last n.succ.succ.succ).castSucc) ≠ ((Fin.last n.succ.succ.succ).succ) := by
|
||||
simp [Fin.ext_iff]
|
||||
refine Prop_two constAbsProp hneq ?_
|
||||
intro M
|
||||
exact lineInPlaneCond_eq_last (lineInPlaneCond_perm hS M)
|
||||
|
||||
theorem linesInPlane_constAbs {S : (PureU1 (n.succ.succ.succ.succ.succ)).LinSols}
|
||||
(hS : lineInPlaneCond S) : constAbs S.val := by
|
||||
intro i j
|
||||
by_cases hij : i ≠ j
|
||||
exact linesInPlane_eq_sq hS i j hij
|
||||
simp at hij
|
||||
rw [hij]
|
||||
|
||||
lemma linesInPlane_four (S : (PureU1 4).Sols) (hS : lineInPlaneCond S.1.1) :
|
||||
constAbsProp (S.val (0 : Fin 4), S.val (1 : Fin 4)) := by
|
||||
simp [constAbsProp]
|
||||
by_contra hn
|
||||
have hLin := pureU1_linear S.1.1
|
||||
have hcube := pureU1_cube S
|
||||
simp at hLin hcube
|
||||
rw [Fin.sum_univ_four] at hLin hcube
|
||||
rw [sq_eq_sq_iff_eq_or_eq_neg] at hn
|
||||
simp [not_or] at hn
|
||||
have l012 := hS 0 1 2 (by simp) (by simp) (by simp)
|
||||
have l013 := hS 0 1 3 (by simp) (by simp) (by simp)
|
||||
have l023 := hS 0 2 3 (by simp) (by simp) (by simp)
|
||||
simp_all [lineInPlaneProp]
|
||||
have h1 : S.val (2 : Fin 4) = S.val (3 : Fin 4) := by
|
||||
linear_combination l012 / 2 + -1 * l013 / 2
|
||||
by_cases h2 : S.val (0 : Fin 4) = S.val (2 : Fin 4)
|
||||
simp_all
|
||||
have h3 : S.val (1 : Fin 4) = - 3 * S.val (2 : Fin 4) := by
|
||||
linear_combination l012 + 3 * h1
|
||||
rw [← h1, h3] at hcube
|
||||
have h4 : S.val (2 : Fin 4) ^ 3 = 0 := by
|
||||
linear_combination -1 * hcube / 24
|
||||
simp at h4
|
||||
simp_all
|
||||
by_cases h3 : S.val (0 : Fin 4) = - S.val (2 : Fin 4)
|
||||
simp_all
|
||||
have h4 : S.val (1 : Fin 4) = - S.val (2 : Fin 4) := by
|
||||
linear_combination l012 + h1
|
||||
simp_all
|
||||
simp_all
|
||||
have h4 : S.val (0 : Fin 4) = - 3 * S.val (3 : Fin 4) := by
|
||||
linear_combination l023
|
||||
have h5 : S.val (1 : Fin 4) = S.val (3 : Fin 4) := by
|
||||
linear_combination l013 - 1 * h4
|
||||
rw [h4, h5] at hcube
|
||||
have h6 : S.val (3 : Fin 4) ^ 3 = 0 := by
|
||||
linear_combination -1 * hcube / 24
|
||||
simp at h6
|
||||
simp_all
|
||||
|
||||
|
||||
lemma linesInPlane_eq_sq_four {S : (PureU1 4).Sols}
|
||||
(hS : lineInPlaneCond S.1.1) : ∀ (i j : Fin 4) (_ : i ≠ j),
|
||||
constAbsProp (S.val i, S.val j) := by
|
||||
refine Prop_two constAbsProp (by simp : (0 : Fin 4) ≠ 1) ?_
|
||||
intro M
|
||||
let S' := (FamilyPermutations 4).solAction.toFun S M
|
||||
have hS' : lineInPlaneCond S'.1.1 :=
|
||||
(lineInPlaneCond_perm hS M)
|
||||
exact linesInPlane_four S' hS'
|
||||
|
||||
|
||||
lemma linesInPlane_constAbs_four (S : (PureU1 4).Sols)
|
||||
(hS : lineInPlaneCond S.1.1) : constAbs S.val := by
|
||||
intro i j
|
||||
by_cases hij : i ≠ j
|
||||
exact linesInPlane_eq_sq_four hS i j hij
|
||||
simp at hij
|
||||
rw [hij]
|
||||
|
||||
theorem linesInPlane_constAbs_AF (S : (PureU1 (n.succ.succ.succ.succ)).Sols)
|
||||
(hS : lineInPlaneCond S.1.1) : constAbs S.val := by
|
||||
induction n
|
||||
exact linesInPlane_constAbs_four S hS
|
||||
exact linesInPlane_constAbs hS
|
||||
|
||||
|
||||
end PureU1
|
Loading…
Add table
Add a link
Reference in a new issue