feat: Some simple extensions of lemmas
This commit is contained in:
parent
a8e4562363
commit
9763e1240b
7 changed files with 150 additions and 11 deletions
|
@ -5,6 +5,10 @@ Authors: Joseph Tooby-Smith
|
|||
-/
|
||||
import HepLean.Tensors.TensorSpecies.UnitTensor
|
||||
import HepLean.Tensors.TensorSpecies.ContractLemmas
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ProdComm
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermProd
|
||||
import HepLean.Tensors.Tree.NodeIdentities.ContrSwap
|
||||
import HepLean.Tensors.Tree.NodeIdentities.PermContr
|
||||
/-!
|
||||
|
||||
## Metrics in tensor trees
|
||||
|
@ -28,6 +32,14 @@ def metricTensor (S : TensorSpecies) (c : S.C) : S.F.obj (OverColor.mk ![c, c])
|
|||
|
||||
variable {S : TensorSpecies}
|
||||
|
||||
lemma metricTensor_congr {c c' : S.C} (h : c = c') : {S.metricTensor c | μ ν}ᵀ.tensor =
|
||||
(perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by subst h; fin_cases x <;> rfl ))
|
||||
{S.metricTensor c' | μ ν}ᵀ).tensor := by
|
||||
subst h
|
||||
change _ = (S.F.map (𝟙 _)).hom (S.metricTensor c)
|
||||
simp
|
||||
|
||||
|
||||
lemma pairIsoSep_inv_metricTensor (c : S.C) :
|
||||
(Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor c) =
|
||||
(S.metric.app (Discrete.mk c)).hom (1 : S.k) := by
|
||||
|
@ -48,12 +60,9 @@ lemma contr_metric_braid_unit (c : S.C) : (((S.FD.obj (Discrete.mk c)) ◁
|
|||
(OverColor.Discrete.pairIsoSep S.FD).inv.hom (S.metricTensor (S.τ c)))))))) =
|
||||
(β_ (S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk c))).hom.hom
|
||||
((S.unit.app (Discrete.mk c)).hom (1 : S.k)) := by
|
||||
have hx : Function.Injective (β_ (S.FD.obj (Discrete.mk c)) (S.FD.obj (Discrete.mk (S.τ c))) ).hom.hom := by
|
||||
change Function.Injective (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).hom
|
||||
exact (β_ (S.FD.obj (Discrete.mk c)).V (S.FD.obj (Discrete.mk (S.τ c))).V ).toLinearEquiv.toEquiv.injective
|
||||
apply hx
|
||||
apply (β_ _ _).toLinearEquiv.toEquiv.injective
|
||||
rw [pairIsoSep_inv_metricTensor, pairIsoSep_inv_metricTensor]
|
||||
rw [S.contr_metric c]
|
||||
erw [S.contr_metric c]
|
||||
change _ = (β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).inv.hom
|
||||
((β_ (S.FD.obj { as := S.τ c }) (S.FD.obj { as := c })).hom.hom _)
|
||||
rw [Discrete.rep_iso_inv_hom_apply]
|
||||
|
@ -66,16 +75,53 @@ lemma metricTensor_contr_dual_metricTensor_perm_cond (c : S.C) : ∀ (x : Fin (N
|
|||
· rfl
|
||||
· rfl
|
||||
|
||||
/-- The contraction of a metric tensor with its dual gives the unit. -/
|
||||
/-- The contraction of a metric tensor with its dual via the inner indices gives the unit. -/
|
||||
lemma metricTensor_contr_dual_metricTensor_eq_unit (c : S.C) :
|
||||
{S.metricTensor c | μ ν ⊗ S.metricTensor (S.τ c) | ν ρ}ᵀ.tensor =
|
||||
(perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
||||
(metricTensor_contr_dual_metricTensor_perm_cond c)) {S.unitTensor c | μ ρ}ᵀ).tensor := by
|
||||
{S.metricTensor c | μ ν ⊗ S.metricTensor (S.τ c) | ν ρ}ᵀ.tensor = ({S.unitTensor c | μ ρ}ᵀ |>
|
||||
perm (OverColor.equivToHomEq (finMapToEquiv ![1, 0] ![1, 0])
|
||||
(metricTensor_contr_dual_metricTensor_perm_cond c))).tensor := by
|
||||
rw [contr_two_two_inner, contr_metric_braid_unit, Discrete.pairIsoSep_β]
|
||||
change (S.F.map _ ≫ S.F.map _ ).hom _ = _
|
||||
rw [← S.F.map_comp]
|
||||
rfl
|
||||
|
||||
/-- The contraction of a metric tensor with its dual via the outer indices gives the unit. -/
|
||||
lemma metricTensor_contr_dual_metricTensor_outer_eq_unit (c : S.C) :
|
||||
{S.metricTensor c | ν μ ⊗ S.metricTensor (S.τ c) | ρ ν}ᵀ.tensor = ({S.unitTensor c | μ ρ}ᵀ |>
|
||||
perm (OverColor.equivToHomEq
|
||||
(finMapToEquiv ![1, 0] ![1, 0]) (fun x => by fin_cases x <;> rfl))).tensor := by
|
||||
conv_lhs =>
|
||||
rw [contr_tensor_eq <| prod_tensor_eq_fst <| metricTensor_congr (S.τ_involution c).symm]
|
||||
rw [contr_tensor_eq <| prod_comm _ _ _ _]
|
||||
rw [perm_contr_congr 2 1 (by rfl) (by rfl)]
|
||||
rw [perm_tensor_eq <| contr_tensor_eq <| prod_perm_right _ _ _ _]
|
||||
rw [perm_tensor_eq <| perm_contr_congr 2 1 (by rfl) (by rfl)]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| contr_swap _ _]
|
||||
rw [perm_perm]
|
||||
erw [perm_tensor_eq <| metricTensor_contr_dual_metricTensor_eq_unit _]
|
||||
rw [perm_perm]
|
||||
rw [perm_tensor_eq <| dual_unitTensor_eq_perm _]
|
||||
rw [perm_perm]
|
||||
apply perm_congr _ rfl
|
||||
apply OverColor.Hom.fin_ext
|
||||
intro i
|
||||
simp only [Functor.id_obj, mk_hom, Function.comp_apply, Equiv.refl_symm, Equiv.coe_refl, id_eq,
|
||||
Fin.zero_eta, Matrix.cons_val_zero, List.pmap.eq_1, ContrPair.contrSwapHom,
|
||||
extractOne_homToEquiv, Category.assoc, Hom.hom_comp, Over.comp_left, equivToHomEq_hom_left,
|
||||
Equiv.toFun_as_coe, types_comp_apply, finMapToEquiv_apply, mkIso_hom_hom_left_apply]
|
||||
rw [extractTwo_hom_left_apply]
|
||||
simp only [mk_left, braidPerm_toEquiv, Equiv.symm_trans_apply, Equiv.symm_symm,
|
||||
Equiv.sumComm_symm, Equiv.sumComm_apply, finExtractOnePerm_symm_apply, Equiv.trans_apply,
|
||||
Equiv.symm_apply_apply, Sum.swap_swap, Equiv.apply_symm_apply, finExtractOne_symm_inr_apply,
|
||||
Fin.zero_succAbove, List.pmap.eq_2, Fin.mk_one, List.pmap.eq_1, Matrix.cons_val_one,
|
||||
Matrix.head_cons, extractTwo_hom_left_apply, permProdRight_toEquiv, equivToHomEq_toEquiv,
|
||||
Equiv.sumCongr_refl, Equiv.refl_trans, Equiv.symm_trans_self, Equiv.refl_symm, Equiv.refl_apply,
|
||||
predAboveI_succAbove, finExtractOnePerm_apply]
|
||||
fin_cases i
|
||||
· decide
|
||||
· decide
|
||||
|
||||
end TensorSpecies
|
||||
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue