feat: Some simple extensions of lemmas
This commit is contained in:
parent
a8e4562363
commit
9763e1240b
7 changed files with 150 additions and 11 deletions
|
@ -140,7 +140,7 @@ lemma perm_eq_iff_eq_perm {n m : ℕ} {c : Fin n → S.C} {c1 : Fin m → S.C}
|
|||
apply Hom.ext
|
||||
ext x
|
||||
change (Hom.toEquiv σ) ((Hom.toEquiv σ).symm x) = x
|
||||
simp
|
||||
simp [-OverColor.mk_left]
|
||||
rw [h1]
|
||||
simp
|
||||
|
||||
|
|
|
@ -35,6 +35,11 @@ def permProdLeft := (equivToIso finSumFinEquiv).inv ≫ σ ▷ OverColor.mk c2
|
|||
def permProdRight := (equivToIso finSumFinEquiv).inv ≫ OverColor.mk c2 ◁ σ
|
||||
≫ (equivToIso finSumFinEquiv).hom
|
||||
|
||||
@[simp]
|
||||
lemma permProdRight_toEquiv : Hom.toEquiv (permProdRight c2 σ) = finSumFinEquiv.symm.trans
|
||||
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := by
|
||||
simp [permProdRight]
|
||||
|
||||
/-- When a `prod` acts on a `perm` node in the left entry, the `perm` node can be moved through
|
||||
the `prod` node via right-whiskering. -/
|
||||
theorem prod_perm_left (t : TensorTree S c) (t2 : TensorTree S c2) :
|
||||
|
|
|
@ -31,6 +31,11 @@ def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
|
|||
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
||||
≫ (equivToIso finSumFinEquiv).hom
|
||||
|
||||
@[simp]
|
||||
lemma braidPerm_toEquiv : Hom.toEquiv (braidPerm c c2) = finSumFinEquiv.symm.trans
|
||||
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := by
|
||||
simp [braidPerm]
|
||||
|
||||
lemma finSumFinEquiv_comp_braidPerm :
|
||||
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
|
||||
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue