feat: Some simple extensions of lemmas

This commit is contained in:
jstoobysmith 2024-11-15 10:33:20 +00:00
parent a8e4562363
commit 9763e1240b
7 changed files with 150 additions and 11 deletions

View file

@ -140,7 +140,7 @@ lemma perm_eq_iff_eq_perm {n m : } {c : Fin n → S.C} {c1 : Fin m → S.C}
apply Hom.ext
ext x
change (Hom.toEquiv σ) ((Hom.toEquiv σ).symm x) = x
simp
simp [-OverColor.mk_left]
rw [h1]
simp

View file

@ -35,6 +35,11 @@ def permProdLeft := (equivToIso finSumFinEquiv).inv ≫ σ ▷ OverColor.mk c2
def permProdRight := (equivToIso finSumFinEquiv).inv ≫ OverColor.mk c2 ◁ σ
≫ (equivToIso finSumFinEquiv).hom
@[simp]
lemma permProdRight_toEquiv : Hom.toEquiv (permProdRight c2 σ) = finSumFinEquiv.symm.trans
(((Equiv.refl (Fin n2)).sumCongr (Hom.toEquiv σ)).trans finSumFinEquiv) := by
simp [permProdRight]
/-- When a `prod` acts on a `perm` node in the left entry, the `perm` node can be moved through
the `prod` node via right-whiskering. -/
theorem prod_perm_left (t : TensorTree S c) (t2 : TensorTree S c2) :

View file

@ -31,6 +31,11 @@ def braidPerm : OverColor.mk (Sum.elim c2 c ∘ ⇑finSumFinEquiv.symm) ⟶
(β_ (OverColor.mk c2) (OverColor.mk c)).hom
≫ (equivToIso finSumFinEquiv).hom
@[simp]
lemma braidPerm_toEquiv : Hom.toEquiv (braidPerm c c2) = finSumFinEquiv.symm.trans
((Equiv.sumComm (Fin n2) (Fin n)).trans finSumFinEquiv) := by
simp [braidPerm]
lemma finSumFinEquiv_comp_braidPerm :
(equivToIso finSumFinEquiv).hom ≫ braidPerm c c2 =
(β_ (OverColor.mk c2) (OverColor.mk c)).hom