Feat: SMNu basics

This commit is contained in:
jstoobysmith 2024-04-18 08:40:46 -04:00
parent ffbba6f051
commit 982281b0ff
4 changed files with 720 additions and 0 deletions

View file

@ -0,0 +1,358 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import Mathlib.Tactic.FinCases
import Mathlib.Algebra.Module.Basic
import Mathlib.Tactic.Ring
import Mathlib.Algebra.GroupWithZero.Units.Lemmas
import HepLean.AnomalyCancellation.Basic
import Mathlib.Algebra.BigOperators.Fin
import Mathlib.Logic.Equiv.Fin
/-!
# Anomaly cancellation conditions for n family SM.
-/
universe v u
open Nat
open BigOperators
/-- The vector space of charges corresponding to the SM fermions with RHN. -/
@[simps!]
def SMνCharges (n : ) : ACCSystemCharges := ACCSystemChargesMk (6 * n)
/-- The vector spaces of charges of one species of fermions in the SM. -/
@[simps!]
def SMνSpecies (n : ) : ACCSystemCharges := ACCSystemChargesMk n
namespace SMνCharges
variable {n : }
/-- An equivalence between `(SMνCharges n).charges` and `(Fin 6 → Fin n → )`
splitting the charges into species.-/
@[simps!]
def toSpeciesEquiv : (SMνCharges n).charges ≃ (Fin 6 → Fin n → ) :=
((Equiv.curry _ _ _).symm.trans ((@finProdFinEquiv 6 n).arrowCongr (Equiv.refl ))).symm
/-- Given an `i ∈ Fin 6`, the projection of charges onto a given species. -/
@[simps!]
def toSpecies (i : Fin 6) : (SMνCharges n).charges →ₗ[] (SMνSpecies n).charges where
toFun S := toSpeciesEquiv S i
map_add' _ _ := by aesop
map_smul' _ _ := by aesop
lemma charges_eq_toSpecies_eq (S T : (SMνCharges n).charges) :
S = T ↔ ∀ i, toSpecies i S = toSpecies i T := by
apply Iff.intro
intro h
rw [h]
simp
intro h
apply toSpeciesEquiv.injective
funext i
exact h i
lemma toSMSpecies_toSpecies_inv (i : Fin 6) (f : (Fin 6 → Fin n → ) ) :
(toSpecies i) (toSpeciesEquiv.symm f) = f i := by
change (toSpeciesEquiv ∘ toSpeciesEquiv.symm ) _ i = f i
simp
lemma toSpecies_one (S : (SMνCharges 1).charges) (j : Fin 6) :
toSpecies j S ⟨0, by simp⟩ = S j := by
match j with
| 0 => rfl
| 1 => rfl
| 2 => rfl
| 3 => rfl
| 4 => rfl
| 5 => rfl
/-- The `Q` charges as a map `Fin n → `. -/
abbrev Q := @toSpecies n 0
/-- The `U` charges as a map `Fin n → `. -/
abbrev U := @toSpecies n 1
/-- The `D` charges as a map `Fin n → `. -/
abbrev D := @toSpecies n 2
/-- The `L` charges as a map `Fin n → `. -/
abbrev L := @toSpecies n 3
/-- The `E` charges as a map `Fin n → `. -/
abbrev E := @toSpecies n 4
/-- The `N` charges as a map `Fin n → `. -/
abbrev N := @toSpecies n 5
end SMνCharges
namespace SMνACCs
open SMνCharges
variable {n : }
/-- The gravitational anomaly equation. -/
@[simp]
def accGrav : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (6 * Q S i + 3 * U S i + 3 * D S i + 2 * L S i + E S i + N S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accGrav_decomp (S : (SMνCharges n).charges) :
accGrav S = 6 * ∑ i, Q S i + 3 * ∑ i, U S i + 3 * ∑ i, D S i + 2 * ∑ i, L S i + ∑ i, E S i +
∑ i, N S i := by
simp
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- Extensionality lemma for `accGrav`. -/
lemma accGrav_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accGrav S = accGrav T := by
rw [accGrav_decomp, accGrav_decomp]
repeat erw [hj]
/-- The `SU(2)` anomaly equation. -/
@[simp]
def accSU2 : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (3 * Q S i + L S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accSU2_decomp (S : (SMνCharges n).charges) :
accSU2 S = 3 * ∑ i, Q S i + ∑ i, L S i := by
simp
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- Extensionality lemma for `accSU2`. -/
lemma accSU2_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accSU2 S = accSU2 T := by
rw [accSU2_decomp, accSU2_decomp]
repeat erw [hj]
/-- The `SU(3)` anomaly equations. -/
@[simp]
def accSU3 : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (2 * Q S i + U S i + D S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [ Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accSU3_decomp (S : (SMνCharges n).charges) :
accSU3 S = 2 * ∑ i, Q S i + ∑ i, U S i + ∑ i, D S i := by
simp
repeat rw [Finset.sum_add_distrib]
repeat rw [← Finset.mul_sum]
/-- Extensionality lemma for `accSU3`. -/
lemma accSU3_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accSU3 S = accSU3 T := by
rw [accSU3_decomp, accSU3_decomp]
repeat rw [hj]
/-- The `Y²` anomaly equation. -/
@[simp]
def accYY : (SMνCharges n).charges →ₗ[] where
toFun S := ∑ i, (Q S i + 8 * U S i + 2 * D S i + 3 * L S i
+ 6 * E S i)
map_add' S T := by
simp only
repeat rw [map_add]
simp [Pi.add_apply, mul_add]
repeat erw [Finset.sum_add_distrib]
ring
map_smul' a S := by
simp only
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
-- rw [show Rat.cast a = a from rfl]
ring
lemma accYY_decomp (S : (SMνCharges n).charges) :
accYY S = ∑ i, Q S i + 8 * ∑ i, U S i + 2 * ∑ i, D S i + 3 * ∑ i, L S i + 6 * ∑ i, E S i := by
simp
repeat rw [Finset.sum_add_distrib]
repeat rw [← Finset.mul_sum]
/-- Extensionality lemma for `accYY`. -/
lemma accYY_ext {S T : (SMνCharges n).charges}
(hj : ∀ (j : Fin 6), ∑ i, (toSpecies j) S i = ∑ i, (toSpecies j) T i) :
accYY S = accYY T := by
rw [accYY_decomp, accYY_decomp]
repeat rw [hj]
/-- The quadratic bilinear map. -/
@[simps!]
def quadBiLin : BiLinearSymm (SMνCharges n).charges where
toFun S := ∑ i, (Q S.1 i * Q S.2 i +
- 2 * (U S.1 i * U S.2 i) +
D S.1 i * D S.2 i +
(- 1) * (L S.1 i * L S.2 i) +
E S.1 i * E S.2 i)
map_smul₁' a S T := by
simp only
rw [Finset.mul_sum]
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
ring
map_add₁' S T R := by
simp only
rw [← Finset.sum_add_distrib]
apply Fintype.sum_congr
intro i
repeat erw [map_add]
simp
ring
swap' S T := by
simp
apply Fintype.sum_congr
intro i
ring
lemma quadBiLin_decomp (S T : (SMνCharges n).charges) :
quadBiLin (S, T) = ∑ i, Q S i * Q T i - 2 * ∑ i, U S i * U T i +
∑ i, D S i * D T i - ∑ i, L S i * L T i + ∑ i, E S i * E T i := by
erw [← quadBiLin.toFun_eq_coe]
rw [quadBiLin]
simp only
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
simp
ring
/-- The quadratic anomaly cancellation condition. -/
@[simp]
def accQuad : HomogeneousQuadratic (SMνCharges n).charges :=
(@quadBiLin n).toHomogeneousQuad
lemma accQuad_decomp (S : (SMνCharges n).charges) :
accQuad S = ∑ i, (Q S i)^2 - 2 * ∑ i, (U S i)^2 + ∑ i, (D S i)^2 - ∑ i, (L S i)^2
+ ∑ i, (E S i)^2 := by
erw [quadBiLin_decomp]
ring_nf
/-- Extensionality lemma for `accQuad`. -/
lemma accQuad_ext {S T : (SMνCharges n).charges}
(h : ∀ j, ∑ i, ((fun a => a^2) ∘ toSpecies j S) i =
∑ i, ((fun a => a^2) ∘ toSpecies j T) i) :
accQuad S = accQuad T := by
rw [accQuad_decomp, accQuad_decomp]
erw [h 0, h 1, h 2, h 3, h 4]
rfl
/-- The symmetric trilinear form used to define the cubic acc. -/
@[simps!]
def cubeTriLin : TriLinearSymm (SMνCharges n).charges where
toFun S := ∑ i, (6 * ((Q S.1 i) * (Q S.2.1 i) * (Q S.2.2 i))
+ 3 * ((U S.1 i) * (U S.2.1 i) * (U S.2.2 i))
+ 3 * ((D S.1 i) * (D S.2.1 i) * (D S.2.2 i))
+ 2 * ((L S.1 i) * (L S.2.1 i) * (L S.2.2 i))
+ ((E S.1 i) * (E S.2.1 i) * (E S.2.2 i))
+ ((N S.1 i) * (N S.2.1 i) * (N S.2.2 i)))
map_smul₁' a S T R := by
simp only
rw [Finset.mul_sum]
apply Fintype.sum_congr
intro i
repeat erw [map_smul]
simp [HSMul.hSMul, SMul.smul]
ring
map_add₁' S T R L := by
simp only
rw [← Finset.sum_add_distrib]
apply Fintype.sum_congr
intro i
repeat erw [map_add]
simp
ring
swap₁' S T L := by
simp
apply Fintype.sum_congr
intro i
ring
swap₂' S T L := by
simp
apply Fintype.sum_congr
intro i
ring
lemma cubeTriLin_decomp (S T R : (SMνCharges n).charges) :
cubeTriLin (S, T, R) = 6 * ∑ i, (Q S i * Q T i * Q R i) + 3 * ∑ i, (U S i * U T i * U R i) +
3 * ∑ i, (D S i * D T i * D R i) + 2 * ∑ i, (L S i * L T i * L R i) +
∑ i, (E S i * E T i * E R i) + ∑ i, (N S i * N T i * N R i) := by
erw [← cubeTriLin.toFun_eq_coe]
rw [cubeTriLin]
simp only
repeat erw [Finset.sum_add_distrib]
repeat erw [← Finset.mul_sum]
/-- The cubic ACC. -/
@[simp]
def accCube : HomogeneousCubic (SMνCharges n).charges := cubeTriLin.toCubic
lemma accCube_decomp (S : (SMνCharges n).charges) :
accCube S = 6 * ∑ i, (Q S i)^3 + 3 * ∑ i, (U S i)^3 + 3 * ∑ i, (D S i)^3 + 2 * ∑ i, (L S i)^3 +
∑ i, (E S i)^3 + ∑ i, (N S i)^3 := by
erw [cubeTriLin_decomp]
ring_nf
/-- Extensionality lemma for `accCube`. -/
lemma accCube_ext {S T : (SMνCharges n).charges}
(h : ∀ j, ∑ i, ((fun a => a^3) ∘ toSpecies j S) i =
∑ i, ((fun a => a^3) ∘ toSpecies j T) i) :
accCube S = accCube T := by
rw [accCube_decomp]
have h1 : ∀ j, ∑ i, (toSpecies j S i) ^ 3 = ∑ i, (toSpecies j T i) ^ 3 := by
intro j
erw [h]
rfl
repeat rw [h1]
rw [accCube_decomp]
end SMνACCs

View file

@ -0,0 +1,236 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Basic
/-!
# Family maps for the Standard Model for RHN ACCs
We define the a series of maps between the charges for different numbers of famlies.
-/
universe v u
namespace SMRHN
open SMνCharges
open SMνACCs
open BigOperators
/-- Given a map of for a generic species, the corresponding map for charges. -/
@[simps!]
def chargesMapOfSpeciesMap {n m : } (f : (SMνSpecies n).charges →ₗ[] (SMνSpecies m).charges) :
(SMνCharges n).charges →ₗ[] (SMνCharges m).charges where
toFun S := toSpeciesEquiv.symm (fun i => (LinearMap.comp f (toSpecies i)) S)
map_add' S T := by
rw [charges_eq_toSpecies_eq]
intro i
rw [map_add]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rw [map_add]
map_smul' a S := by
rw [charges_eq_toSpecies_eq]
intro i
rw [map_smul]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rw [map_smul]
rfl
lemma chargesMapOfSpeciesMap_toSpecies {n m : }
(f : (SMνSpecies n).charges →ₗ[] (SMνSpecies m).charges)
(S : (SMνCharges n).charges) (j : Fin 6) :
toSpecies j (chargesMapOfSpeciesMap f S) = (LinearMap.comp f (toSpecies j)) S := by
erw [toSMSpecies_toSpecies_inv]
/-- The projection of the `m`-family charges onto the first `n`-family charges for species. -/
@[simps!]
def speciesFamilyProj {m n : } (h : n ≤ m) :
(SMνSpecies m).charges →ₗ[] (SMνSpecies n).charges where
toFun S := S ∘ Fin.castLE h
map_add' S T := by
funext i
simp
map_smul' a S := by
funext i
simp [HSMul.hSMul]
-- rw [show Rat.cast a = a from rfl]
/-- The projection of the `m`-family charges onto the first `n`-family charges. -/
def familyProjection {m n : } (h : n ≤ m) : (SMνCharges m).charges →ₗ[] (SMνCharges n).charges :=
chargesMapOfSpeciesMap (speciesFamilyProj h)
/-- For species, the embedding of the `m`-family charges onto the `n`-family charges, with all
other charges zero. -/
@[simps!]
def speciesEmbed (m n : ) :
(SMνSpecies m).charges →ₗ[] (SMνSpecies n).charges where
toFun S := fun i =>
if hi : i.val < m then
S ⟨i, hi⟩
else
0
map_add' S T := by
funext i
simp
by_cases hi : i.val < m
erw [dif_pos hi, dif_pos hi, dif_pos hi]
erw [dif_neg hi, dif_neg hi, dif_neg hi]
rfl
map_smul' a S := by
funext i
simp [HSMul.hSMul]
by_cases hi : i.val < m
erw [dif_pos hi, dif_pos hi]
erw [dif_neg hi, dif_neg hi]
simp
/-- The embedding of the `m`-family charges onto the `n`-family charges, with all
other charges zero. -/
def familyEmbedding (m n : ) : (SMνCharges m).charges →ₗ[] (SMνCharges n).charges :=
chargesMapOfSpeciesMap (speciesEmbed m n)
/-- For species, the embeddding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
@[simps!]
def speciesFamilyUniversial (n : ) :
(SMνSpecies 1).charges →ₗ[] (SMνSpecies n).charges where
toFun S _ := S ⟨0, by simp⟩
map_add' S T := by
funext _
simp
map_smul' a S := by
funext i
simp [HSMul.hSMul]
-- rw [show Rat.cast a = a from rfl]
/-- The embeddding of the `1`-family charges into the `n`-family charges in
a universal manor. -/
def familyUniversal (n : ) : (SMνCharges 1).charges →ₗ[] (SMνCharges n).charges :=
chargesMapOfSpeciesMap (speciesFamilyUniversial n)
lemma toSpecies_familyUniversal {n : } (j : Fin 6) (S : (SMνCharges 1).charges)
(i : Fin n) : toSpecies j (familyUniversal n S) i = toSpecies j S ⟨0, by simp⟩ := by
erw [chargesMapOfSpeciesMap_toSpecies]
rfl
lemma sum_familyUniversal {n : } (m : ) (S : (SMνCharges 1).charges) (j : Fin 6) :
∑ i, ((fun a => a ^ m) ∘ toSpecies j (familyUniversal n S)) i =
n * (toSpecies j S ⟨0, by simp⟩) ^ m := by
simp
have h1 : (n : ) * (toSpecies j S ⟨0, by simp⟩) ^ m = ∑ _i : Fin n, (toSpecies j S ⟨0, by simp⟩) ^ m:= by
rw [Fin.sum_const]
simp
erw [h1]
apply Finset.sum_congr
simp
intro i _
erw [toSpecies_familyUniversal]
lemma sum_familyUniversal_one {n : } (S : (SMνCharges 1).charges) (j : Fin 6) :
∑ i, toSpecies j (familyUniversal n S) i = n * (toSpecies j S ⟨0, by simp⟩) := by
simpa using @sum_familyUniversal n 1 S j
lemma sum_familyUniversal_two {n : } (S : (SMνCharges 1).charges)
(T : (SMνCharges n).charges) (j : Fin 6) :
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i) =
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i := by
simp
rw [Finset.mul_sum]
apply Finset.sum_congr
simp
intro i _
erw [toSpecies_familyUniversal]
rfl
lemma sum_familyUniversal_three {n : } (S : (SMνCharges 1).charges)
(T L : (SMνCharges n).charges) (j : Fin 6) :
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i * toSpecies j L i) =
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i * toSpecies j L i := by
simp
rw [Finset.mul_sum]
apply Finset.sum_congr
simp
intro i _
erw [toSpecies_familyUniversal]
simp
ring
lemma familyUniversal_accGrav (S : (SMνCharges 1).charges) :
accGrav (familyUniversal n S) = n * (accGrav S) := by
rw [accGrav_decomp, accGrav_decomp]
repeat rw [sum_familyUniversal_one]
simp
ring
lemma familyUniversal_accSU2 (S : (SMνCharges 1).charges) :
accSU2 (familyUniversal n S) = n * (accSU2 S) := by
rw [accSU2_decomp, accSU2_decomp]
repeat rw [sum_familyUniversal_one]
simp
ring
lemma familyUniversal_accSU3 (S : (SMνCharges 1).charges) :
accSU3 (familyUniversal n S) = n * (accSU3 S) := by
rw [accSU3_decomp, accSU3_decomp]
repeat rw [sum_familyUniversal_one]
simp
ring
lemma familyUniversal_accYY (S : (SMνCharges 1).charges) :
accYY (familyUniversal n S) = n * (accYY S) := by
rw [accYY_decomp, accYY_decomp]
repeat rw [sum_familyUniversal_one]
simp
ring
lemma familyUniversal_quadBiLin (S : (SMνCharges 1).charges) (T : (SMνCharges n).charges) :
quadBiLin (familyUniversal n S, T) =
S (0 : Fin 6) * ∑ i, Q T i - 2 * S (1 : Fin 6) * ∑ i, U T i + S (2 : Fin 6) *∑ i, D T i -
S (3 : Fin 6) * ∑ i, L T i + S (4 : Fin 6) * ∑ i, E T i := by
rw [quadBiLin_decomp]
repeat rw [sum_familyUniversal_two]
repeat rw [toSpecies_one]
simp
ring
lemma familyUniversal_accQuad (S : (SMνCharges 1).charges) :
accQuad (familyUniversal n S) = n * (accQuad S) := by
rw [accQuad_decomp]
repeat erw [sum_familyUniversal]
rw [accQuad_decomp]
simp
ring
lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).charges) (T R : (SMνCharges n).charges) :
cubeTriLin (familyUniversal n S, T, R) = 6 * S (0 : Fin 6) * ∑ i, (Q T i * Q R i) +
3 * S (1 : Fin 6) * ∑ i, (U T i * U R i) + 3 * S (2 : Fin 6) * ∑ i, (D T i * D R i)
+ 2 * S (3 : Fin 6) * ∑ i, (L T i * L R i) +
S (4 : Fin 6) * ∑ i, (E T i * E R i) + S (5 : Fin 6) * ∑ i, (N T i * N R i) := by
rw [cubeTriLin_decomp]
repeat rw [sum_familyUniversal_three]
repeat rw [toSpecies_one]
simp
ring
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).charges) (R : (SMνCharges n).charges) :
cubeTriLin (familyUniversal n S, familyUniversal n T, R) =
6 * S (0 : Fin 6) * T (0 : Fin 6) * ∑ i, Q R i +
3 * S (1 : Fin 6) * T (1 : Fin 6) * ∑ i, U R i
+ 3 * S (2 : Fin 6) * T (2 : Fin 6) * ∑ i, D R i +
2 * S (3 : Fin 6) * T (3 : Fin 6) * ∑ i, L R i +
S (4 : Fin 6) * T (4 : Fin 6) * ∑ i, E R i + S (5 : Fin 6) * T (5 : Fin 6) * ∑ i, N R i := by
rw [familyUniversal_cubeTriLin]
repeat rw [sum_familyUniversal_two]
repeat rw [toSpecies_one]
simp
ring
lemma familyUniversal_accCube (S : (SMνCharges 1).charges) :
accCube (familyUniversal n S) = n * (accCube S) := by
rw [accCube_decomp]
repeat erw [sum_familyUniversal]
rw [accCube_decomp]
simp
ring
end SMRHN

View file

@ -0,0 +1,124 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Basic
import Mathlib.Tactic.Polyrith
import HepLean.AnomalyCancellation.GroupActions
/-!
# Permutations of SM charges with RHN.
We define the group of permutations for the SM charges with RHN.
-/
universe v u
open Nat
open Finset
namespace SMRHN
open SMνCharges
open SMνACCs
open BigOperators
/-- The group of `Sₙ` permutations for each species. -/
@[simp]
def permGroup (n : ) := Fin 6 → Equiv.Perm (Fin n)
variable {n : }
@[simps!]
instance : Group (permGroup n) := Pi.group
/-- The image of an element of `permGroup n` under the representation on charges. -/
@[simps!]
def chargeMap (f : permGroup n) : (SMνCharges n).charges →ₗ[] (SMνCharges n).charges where
toFun S := toSpeciesEquiv.symm (fun i => toSpecies i S ∘ f i )
map_add' S T := by
simp only
rw [charges_eq_toSpecies_eq]
intro i
rw [(toSpecies i).map_add]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
map_smul' a S := by
simp only
rw [charges_eq_toSpecies_eq]
intro i
rw [(toSpecies i).map_smul, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
/-- The representation of `(permGroup n)` acting on the vector space of charges. -/
@[simps!]
def repCharges {n : } : Representation (permGroup n) (SMνCharges n).charges where
toFun f := chargeMap f⁻¹
map_mul' f g :=by
simp
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
intro i
simp
repeat erw [toSMSpecies_toSpecies_inv]
rfl
map_one' := by
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
intro i
erw [toSMSpecies_toSpecies_inv]
rfl
lemma repCharges_toSpecies (f : permGroup n) (S : (SMνCharges n).charges) (j : Fin 6) :
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
erw [toSMSpecies_toSpecies_inv]
lemma toSpecies_sum_invariant (m : ) (f : permGroup n) (S : (SMνCharges n).charges) (j : Fin 6) :
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
erw [repCharges_toSpecies]
change ∑ i : Fin n, ((fun a => a ^ m) ∘ _) (⇑(f⁻¹ _) i) = ∑ i : Fin n, ((fun a => a ^ m) ∘ _) i
refine Equiv.Perm.sum_comp _ _ _ ?_
simp only [permGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ]
lemma accGrav_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accGrav (repCharges f S) = accGrav S :=
accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accSU2_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accSU2 (repCharges f S) = accSU2 S :=
accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accSU3_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accYY_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accQuad_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
lemma accCube_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accCube (repCharges f S) = accCube S :=
accCube_ext
(by simpa using toSpecies_sum_invariant 3 f S)
end SMRHN