Feat: SMNu basics
This commit is contained in:
parent
ffbba6f051
commit
982281b0ff
4 changed files with 720 additions and 0 deletions
236
HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean
Normal file
236
HepLean/AnomalyCancellation/SMNu/FamilyMaps.lean
Normal file
|
@ -0,0 +1,236 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.Basic
|
||||
/-!
|
||||
# Family maps for the Standard Model for RHN ACCs
|
||||
|
||||
We define the a series of maps between the charges for different numbers of famlies.
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
namespace SMRHN
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
/-- Given a map of for a generic species, the corresponding map for charges. -/
|
||||
@[simps!]
|
||||
def chargesMapOfSpeciesMap {n m : ℕ} (f : (SMνSpecies n).charges →ₗ[ℚ] (SMνSpecies m).charges) :
|
||||
(SMνCharges n).charges →ₗ[ℚ] (SMνCharges m).charges where
|
||||
toFun S := toSpeciesEquiv.symm (fun i => (LinearMap.comp f (toSpecies i)) S)
|
||||
map_add' S T := by
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
rw [map_add]
|
||||
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
|
||||
rw [map_add]
|
||||
map_smul' a S := by
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
rw [map_smul]
|
||||
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
|
||||
rw [map_smul]
|
||||
rfl
|
||||
|
||||
lemma chargesMapOfSpeciesMap_toSpecies {n m : ℕ}
|
||||
(f : (SMνSpecies n).charges →ₗ[ℚ] (SMνSpecies m).charges)
|
||||
(S : (SMνCharges n).charges) (j : Fin 6) :
|
||||
toSpecies j (chargesMapOfSpeciesMap f S) = (LinearMap.comp f (toSpecies j)) S := by
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
||||
/-- The projection of the `m`-family charges onto the first `n`-family charges for species. -/
|
||||
@[simps!]
|
||||
def speciesFamilyProj {m n : ℕ} (h : n ≤ m) :
|
||||
(SMνSpecies m).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
||||
toFun S := S ∘ Fin.castLE h
|
||||
map_add' S T := by
|
||||
funext i
|
||||
simp
|
||||
map_smul' a S := by
|
||||
funext i
|
||||
simp [HSMul.hSMul]
|
||||
-- rw [show Rat.cast a = a from rfl]
|
||||
|
||||
/-- The projection of the `m`-family charges onto the first `n`-family charges. -/
|
||||
def familyProjection {m n : ℕ} (h : n ≤ m) : (SMνCharges m).charges →ₗ[ℚ] (SMνCharges n).charges :=
|
||||
chargesMapOfSpeciesMap (speciesFamilyProj h)
|
||||
|
||||
/-- For species, the embedding of the `m`-family charges onto the `n`-family charges, with all
|
||||
other charges zero. -/
|
||||
@[simps!]
|
||||
def speciesEmbed (m n : ℕ) :
|
||||
(SMνSpecies m).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
||||
toFun S := fun i =>
|
||||
if hi : i.val < m then
|
||||
S ⟨i, hi⟩
|
||||
else
|
||||
0
|
||||
map_add' S T := by
|
||||
funext i
|
||||
simp
|
||||
by_cases hi : i.val < m
|
||||
erw [dif_pos hi, dif_pos hi, dif_pos hi]
|
||||
erw [dif_neg hi, dif_neg hi, dif_neg hi]
|
||||
rfl
|
||||
map_smul' a S := by
|
||||
funext i
|
||||
simp [HSMul.hSMul]
|
||||
by_cases hi : i.val < m
|
||||
erw [dif_pos hi, dif_pos hi]
|
||||
erw [dif_neg hi, dif_neg hi]
|
||||
simp
|
||||
|
||||
/-- The embedding of the `m`-family charges onto the `n`-family charges, with all
|
||||
other charges zero. -/
|
||||
def familyEmbedding (m n : ℕ) : (SMνCharges m).charges →ₗ[ℚ] (SMνCharges n).charges :=
|
||||
chargesMapOfSpeciesMap (speciesEmbed m n)
|
||||
|
||||
/-- For species, the embeddding of the `1`-family charges into the `n`-family charges in
|
||||
a universal manor. -/
|
||||
@[simps!]
|
||||
def speciesFamilyUniversial (n : ℕ) :
|
||||
(SMνSpecies 1).charges →ₗ[ℚ] (SMνSpecies n).charges where
|
||||
toFun S _ := S ⟨0, by simp⟩
|
||||
map_add' S T := by
|
||||
funext _
|
||||
simp
|
||||
map_smul' a S := by
|
||||
funext i
|
||||
simp [HSMul.hSMul]
|
||||
-- rw [show Rat.cast a = a from rfl]
|
||||
|
||||
/-- The embeddding of the `1`-family charges into the `n`-family charges in
|
||||
a universal manor. -/
|
||||
def familyUniversal (n : ℕ) : (SMνCharges 1).charges →ₗ[ℚ] (SMνCharges n).charges :=
|
||||
chargesMapOfSpeciesMap (speciesFamilyUniversial n)
|
||||
|
||||
lemma toSpecies_familyUniversal {n : ℕ} (j : Fin 6) (S : (SMνCharges 1).charges)
|
||||
(i : Fin n) : toSpecies j (familyUniversal n S) i = toSpecies j S ⟨0, by simp⟩ := by
|
||||
erw [chargesMapOfSpeciesMap_toSpecies]
|
||||
rfl
|
||||
|
||||
lemma sum_familyUniversal {n : ℕ} (m : ℕ) (S : (SMνCharges 1).charges) (j : Fin 6) :
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (familyUniversal n S)) i =
|
||||
n * (toSpecies j S ⟨0, by simp⟩) ^ m := by
|
||||
simp
|
||||
have h1 : (n : ℚ) * (toSpecies j S ⟨0, by simp⟩) ^ m = ∑ _i : Fin n, (toSpecies j S ⟨0, by simp⟩) ^ m:= by
|
||||
rw [Fin.sum_const]
|
||||
simp
|
||||
erw [h1]
|
||||
apply Finset.sum_congr
|
||||
simp
|
||||
intro i _
|
||||
erw [toSpecies_familyUniversal]
|
||||
|
||||
lemma sum_familyUniversal_one {n : ℕ} (S : (SMνCharges 1).charges) (j : Fin 6) :
|
||||
∑ i, toSpecies j (familyUniversal n S) i = n * (toSpecies j S ⟨0, by simp⟩) := by
|
||||
simpa using @sum_familyUniversal n 1 S j
|
||||
|
||||
lemma sum_familyUniversal_two {n : ℕ} (S : (SMνCharges 1).charges)
|
||||
(T : (SMνCharges n).charges) (j : Fin 6) :
|
||||
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i) =
|
||||
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i := by
|
||||
simp
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr
|
||||
simp
|
||||
intro i _
|
||||
erw [toSpecies_familyUniversal]
|
||||
rfl
|
||||
|
||||
lemma sum_familyUniversal_three {n : ℕ} (S : (SMνCharges 1).charges)
|
||||
(T L : (SMνCharges n).charges) (j : Fin 6) :
|
||||
∑ i, (toSpecies j (familyUniversal n S) i * toSpecies j T i * toSpecies j L i) =
|
||||
(toSpecies j S ⟨0, by simp⟩) * ∑ i, toSpecies j T i * toSpecies j L i := by
|
||||
simp
|
||||
rw [Finset.mul_sum]
|
||||
apply Finset.sum_congr
|
||||
simp
|
||||
intro i _
|
||||
erw [toSpecies_familyUniversal]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accGrav (S : (SMνCharges 1).charges) :
|
||||
accGrav (familyUniversal n S) = n * (accGrav S) := by
|
||||
rw [accGrav_decomp, accGrav_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accSU2 (S : (SMνCharges 1).charges) :
|
||||
accSU2 (familyUniversal n S) = n * (accSU2 S) := by
|
||||
rw [accSU2_decomp, accSU2_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accSU3 (S : (SMνCharges 1).charges) :
|
||||
accSU3 (familyUniversal n S) = n * (accSU3 S) := by
|
||||
rw [accSU3_decomp, accSU3_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accYY (S : (SMνCharges 1).charges) :
|
||||
accYY (familyUniversal n S) = n * (accYY S) := by
|
||||
rw [accYY_decomp, accYY_decomp]
|
||||
repeat rw [sum_familyUniversal_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_quadBiLin (S : (SMνCharges 1).charges) (T : (SMνCharges n).charges) :
|
||||
quadBiLin (familyUniversal n S, T) =
|
||||
S (0 : Fin 6) * ∑ i, Q T i - 2 * S (1 : Fin 6) * ∑ i, U T i + S (2 : Fin 6) *∑ i, D T i -
|
||||
S (3 : Fin 6) * ∑ i, L T i + S (4 : Fin 6) * ∑ i, E T i := by
|
||||
rw [quadBiLin_decomp]
|
||||
repeat rw [sum_familyUniversal_two]
|
||||
repeat rw [toSpecies_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accQuad (S : (SMνCharges 1).charges) :
|
||||
accQuad (familyUniversal n S) = n * (accQuad S) := by
|
||||
rw [accQuad_decomp]
|
||||
repeat erw [sum_familyUniversal]
|
||||
rw [accQuad_decomp]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).charges) (T R : (SMνCharges n).charges) :
|
||||
cubeTriLin (familyUniversal n S, T, R) = 6 * S (0 : Fin 6) * ∑ i, (Q T i * Q R i) +
|
||||
3 * S (1 : Fin 6) * ∑ i, (U T i * U R i) + 3 * S (2 : Fin 6) * ∑ i, (D T i * D R i)
|
||||
+ 2 * S (3 : Fin 6) * ∑ i, (L T i * L R i) +
|
||||
S (4 : Fin 6) * ∑ i, (E T i * E R i) + S (5 : Fin 6) * ∑ i, (N T i * N R i) := by
|
||||
rw [cubeTriLin_decomp]
|
||||
repeat rw [sum_familyUniversal_three]
|
||||
repeat rw [toSpecies_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).charges) (R : (SMνCharges n).charges) :
|
||||
cubeTriLin (familyUniversal n S, familyUniversal n T, R) =
|
||||
6 * S (0 : Fin 6) * T (0 : Fin 6) * ∑ i, Q R i +
|
||||
3 * S (1 : Fin 6) * T (1 : Fin 6) * ∑ i, U R i
|
||||
+ 3 * S (2 : Fin 6) * T (2 : Fin 6) * ∑ i, D R i +
|
||||
2 * S (3 : Fin 6) * T (3 : Fin 6) * ∑ i, L R i +
|
||||
S (4 : Fin 6) * T (4 : Fin 6) * ∑ i, E R i + S (5 : Fin 6) * T (5 : Fin 6) * ∑ i, N R i := by
|
||||
rw [familyUniversal_cubeTriLin]
|
||||
repeat rw [sum_familyUniversal_two]
|
||||
repeat rw [toSpecies_one]
|
||||
simp
|
||||
ring
|
||||
|
||||
lemma familyUniversal_accCube (S : (SMνCharges 1).charges) :
|
||||
accCube (familyUniversal n S) = n * (accCube S) := by
|
||||
rw [accCube_decomp]
|
||||
repeat erw [sum_familyUniversal]
|
||||
rw [accCube_decomp]
|
||||
simp
|
||||
ring
|
||||
|
||||
end SMRHN
|
Loading…
Add table
Add a link
Reference in a new issue