Feat: SMNu basics
This commit is contained in:
parent
ffbba6f051
commit
982281b0ff
4 changed files with 720 additions and 0 deletions
124
HepLean/AnomalyCancellation/SMNu/Permutations.lean
Normal file
124
HepLean/AnomalyCancellation/SMNu/Permutations.lean
Normal file
|
@ -0,0 +1,124 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.AnomalyCancellation.SMNu.Basic
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import HepLean.AnomalyCancellation.GroupActions
|
||||
/-!
|
||||
# Permutations of SM charges with RHN.
|
||||
|
||||
We define the group of permutations for the SM charges with RHN.
|
||||
|
||||
-/
|
||||
|
||||
universe v u
|
||||
|
||||
open Nat
|
||||
open Finset
|
||||
|
||||
namespace SMRHN
|
||||
|
||||
open SMνCharges
|
||||
open SMνACCs
|
||||
open BigOperators
|
||||
|
||||
/-- The group of `Sₙ` permutations for each species. -/
|
||||
@[simp]
|
||||
def permGroup (n : ℕ) := Fin 6 → Equiv.Perm (Fin n)
|
||||
|
||||
variable {n : ℕ}
|
||||
|
||||
@[simps!]
|
||||
instance : Group (permGroup n) := Pi.group
|
||||
|
||||
/-- The image of an element of `permGroup n` under the representation on charges. -/
|
||||
@[simps!]
|
||||
def chargeMap (f : permGroup n) : (SMνCharges n).charges →ₗ[ℚ] (SMνCharges n).charges where
|
||||
toFun S := toSpeciesEquiv.symm (fun i => toSpecies i S ∘ f i )
|
||||
map_add' S T := by
|
||||
simp only
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
rw [(toSpecies i).map_add]
|
||||
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
map_smul' a S := by
|
||||
simp only
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
rw [(toSpecies i).map_smul, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
|
||||
/-- The representation of `(permGroup n)` acting on the vector space of charges. -/
|
||||
@[simps!]
|
||||
def repCharges {n : ℕ} : Representation ℚ (permGroup n) (SMνCharges n).charges where
|
||||
toFun f := chargeMap f⁻¹
|
||||
map_mul' f g :=by
|
||||
simp
|
||||
apply LinearMap.ext
|
||||
intro S
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
simp
|
||||
repeat erw [toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
map_one' := by
|
||||
apply LinearMap.ext
|
||||
intro S
|
||||
rw [charges_eq_toSpecies_eq]
|
||||
intro i
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
rfl
|
||||
|
||||
lemma repCharges_toSpecies (f : permGroup n) (S : (SMνCharges n).charges) (j : Fin 6) :
|
||||
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
|
||||
erw [toSMSpecies_toSpecies_inv]
|
||||
|
||||
|
||||
lemma toSpecies_sum_invariant (m : ℕ) (f : permGroup n) (S : (SMνCharges n).charges) (j : Fin 6) :
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
|
||||
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
|
||||
erw [repCharges_toSpecies]
|
||||
change ∑ i : Fin n, ((fun a => a ^ m) ∘ _) (⇑(f⁻¹ _) i) = ∑ i : Fin n, ((fun a => a ^ m) ∘ _) i
|
||||
refine Equiv.Perm.sum_comp _ _ _ ?_
|
||||
simp only [permGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ]
|
||||
|
||||
|
||||
lemma accGrav_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
|
||||
accGrav (repCharges f S) = accGrav S :=
|
||||
accGrav_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accSU2_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
|
||||
accSU2 (repCharges f S) = accSU2 S :=
|
||||
accSU2_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accSU3_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
|
||||
accSU3 (repCharges f S) = accSU3 S :=
|
||||
accSU3_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
lemma accYY_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
|
||||
accYY (repCharges f S) = accYY S :=
|
||||
accYY_ext
|
||||
(by simpa using toSpecies_sum_invariant 1 f S)
|
||||
|
||||
|
||||
lemma accQuad_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
|
||||
accQuad (repCharges f S) = accQuad S :=
|
||||
accQuad_ext
|
||||
(toSpecies_sum_invariant 2 f S)
|
||||
|
||||
lemma accCube_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
|
||||
accCube (repCharges f S) = accCube S :=
|
||||
accCube_ext
|
||||
(by simpa using toSpecies_sum_invariant 3 f S)
|
||||
|
||||
|
||||
|
||||
end SMRHN
|
Loading…
Add table
Add a link
Reference in a new issue