Feat: SMNu basics

This commit is contained in:
jstoobysmith 2024-04-18 08:40:46 -04:00
parent ffbba6f051
commit 982281b0ff
4 changed files with 720 additions and 0 deletions

View file

@ -0,0 +1,124 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.AnomalyCancellation.SMNu.Basic
import Mathlib.Tactic.Polyrith
import HepLean.AnomalyCancellation.GroupActions
/-!
# Permutations of SM charges with RHN.
We define the group of permutations for the SM charges with RHN.
-/
universe v u
open Nat
open Finset
namespace SMRHN
open SMνCharges
open SMνACCs
open BigOperators
/-- The group of `Sₙ` permutations for each species. -/
@[simp]
def permGroup (n : ) := Fin 6 → Equiv.Perm (Fin n)
variable {n : }
@[simps!]
instance : Group (permGroup n) := Pi.group
/-- The image of an element of `permGroup n` under the representation on charges. -/
@[simps!]
def chargeMap (f : permGroup n) : (SMνCharges n).charges →ₗ[] (SMνCharges n).charges where
toFun S := toSpeciesEquiv.symm (fun i => toSpecies i S ∘ f i )
map_add' S T := by
simp only
rw [charges_eq_toSpecies_eq]
intro i
rw [(toSpecies i).map_add]
rw [toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
map_smul' a S := by
simp only
rw [charges_eq_toSpecies_eq]
intro i
rw [(toSpecies i).map_smul, toSMSpecies_toSpecies_inv, toSMSpecies_toSpecies_inv]
rfl
/-- The representation of `(permGroup n)` acting on the vector space of charges. -/
@[simps!]
def repCharges {n : } : Representation (permGroup n) (SMνCharges n).charges where
toFun f := chargeMap f⁻¹
map_mul' f g :=by
simp
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
intro i
simp
repeat erw [toSMSpecies_toSpecies_inv]
rfl
map_one' := by
apply LinearMap.ext
intro S
rw [charges_eq_toSpecies_eq]
intro i
erw [toSMSpecies_toSpecies_inv]
rfl
lemma repCharges_toSpecies (f : permGroup n) (S : (SMνCharges n).charges) (j : Fin 6) :
toSpecies j (repCharges f S) = toSpecies j S ∘ f⁻¹ j := by
erw [toSMSpecies_toSpecies_inv]
lemma toSpecies_sum_invariant (m : ) (f : permGroup n) (S : (SMνCharges n).charges) (j : Fin 6) :
∑ i, ((fun a => a ^ m) ∘ toSpecies j (repCharges f S)) i =
∑ i, ((fun a => a ^ m) ∘ toSpecies j S) i := by
erw [repCharges_toSpecies]
change ∑ i : Fin n, ((fun a => a ^ m) ∘ _) (⇑(f⁻¹ _) i) = ∑ i : Fin n, ((fun a => a ^ m) ∘ _) i
refine Equiv.Perm.sum_comp _ _ _ ?_
simp only [permGroup, Fin.isValue, Pi.inv_apply, ne_eq, coe_univ, Set.subset_univ]
lemma accGrav_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accGrav (repCharges f S) = accGrav S :=
accGrav_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accSU2_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accSU2 (repCharges f S) = accSU2 S :=
accSU2_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accSU3_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accSU3 (repCharges f S) = accSU3 S :=
accSU3_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accYY_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accYY (repCharges f S) = accYY S :=
accYY_ext
(by simpa using toSpecies_sum_invariant 1 f S)
lemma accQuad_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accQuad (repCharges f S) = accQuad S :=
accQuad_ext
(toSpecies_sum_invariant 2 f S)
lemma accCube_invariant (f : permGroup n) (S : (SMνCharges n).charges) :
accCube (repCharges f S) = accCube S :=
accCube_ext
(by simpa using toSpecies_sum_invariant 3 f S)
end SMRHN