chore: Bump to lean v.4.12.0
This commit is contained in:
parent
47d9649c44
commit
987bbf6013
23 changed files with 92 additions and 58 deletions
|
@ -85,7 +85,11 @@ def preimageType' {𝓥 : Type} (v : 𝓥) : Over 𝓥 ⥤ Type where
|
|||
have h := congrFun F.w x
|
||||
simp only [Functor.const_obj_obj, Functor.id_obj, Functor.id_map, types_comp_apply,
|
||||
CostructuredArrow.right_eq_id, Functor.const_obj_map, types_id_apply] at h
|
||||
simpa [h] using x.2⟩
|
||||
simp only [Functor.id_obj, Functor.const_obj_obj, Set.mem_preimage, Set.mem_singleton_iff]
|
||||
obtain ⟨val, property⟩ := x
|
||||
simp_all only
|
||||
simp_all only [Functor.id_obj, Functor.const_obj_obj, Set.mem_preimage,
|
||||
Set.mem_singleton_iff]⟩
|
||||
|
||||
/-- The functor from `Over (P.HalfEdgeLabel × P.EdgeLabel × P.VertexLabel)` to
|
||||
`Over P.HalfEdgeLabel` induced by pull-back along insertion of `v : P.VertexLabel`. -/
|
||||
|
@ -288,7 +292,7 @@ instance diagramVertexPropDecidable
|
|||
(f : 𝓥 ⟶ P.VertexLabel) : Decidable (P.DiagramVertexProp F f) :=
|
||||
@decidable_of_decidable_of_iff _ _
|
||||
(@Fintype.decidableForallFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||||
(fun _ => @And.decidable _ _ _ (@Fintype.decidablePiFintype _ _
|
||||
(fun _ => @instDecidableAnd _ _ _ (@Fintype.decidablePiFintype _ _
|
||||
(fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _) _)
|
||||
(P.diagramVertexProp_iff F f).symm
|
||||
|
||||
|
@ -298,7 +302,7 @@ instance diagramEdgePropDecidable
|
|||
(f : 𝓔 ⟶ P.EdgeLabel) : Decidable (P.DiagramEdgeProp F f) :=
|
||||
@decidable_of_decidable_of_iff _ _
|
||||
(@Fintype.decidableForallFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _
|
||||
(fun _ => @And.decidable _ _ _ (@Fintype.decidablePiFintype _ _
|
||||
(fun _ => @instDecidableAnd _ _ _ (@Fintype.decidablePiFintype _ _
|
||||
(fun _ => P.preFeynmanRuleDecEq𝓱𝓔) _ _ _)) _) _)
|
||||
(P.diagramEdgeProp_iff F f).symm
|
||||
|
||||
|
@ -371,7 +375,7 @@ instance CondDecidable [IsFinitePreFeynmanRule P] {𝓔 𝓥 𝓱𝓔 : Type} (
|
|||
(𝓱𝓔To𝓔𝓥 : 𝓱𝓔 → P.HalfEdgeLabel × 𝓔 × 𝓥)
|
||||
[Fintype 𝓥] [DecidableEq 𝓥] [Fintype 𝓔] [DecidableEq 𝓔] [h : Fintype 𝓱𝓔] [DecidableEq 𝓱𝓔] :
|
||||
Decidable (Cond 𝓔𝓞 𝓥𝓞 𝓱𝓔To𝓔𝓥) :=
|
||||
@And.decidable _ _
|
||||
@instDecidableAnd _ _
|
||||
(@diagramEdgePropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓔𝓞)
|
||||
(@diagramVertexPropDecidable P _ _ _ _ _ (Over.mk 𝓱𝓔To𝓔𝓥) _ h 𝓥𝓞)
|
||||
|
||||
|
@ -569,7 +573,7 @@ instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFin
|
|||
|
||||
instance {F G : FeynmanDiagram P} [IsFiniteDiagram F] [IsFiniteDiagram G] [IsFinitePreFeynmanRule P]
|
||||
(𝓔 : F.𝓔 → G.𝓔) (𝓥 : F.𝓥 → G.𝓥) (𝓱𝓔 : F.𝓱𝓔 → G.𝓱𝓔) : Decidable (Cond 𝓔 𝓥 𝓱𝓔) :=
|
||||
And.decidable
|
||||
instDecidableAnd
|
||||
|
||||
/-- Making a Feynman diagram from maps of edges, vertices and half-edges. -/
|
||||
@[simps! 𝓔𝓞_left 𝓥𝓞_left 𝓱𝓔To𝓔𝓥_left]
|
||||
|
@ -712,10 +716,10 @@ def AdjRelation : F.𝓥 → F.𝓥 → Prop := fun x y =>
|
|||
∧ (F.𝓱𝓔To𝓔𝓥.hom a).2.2 = x ∧ (F.𝓱𝓔To𝓔𝓥.hom b).2.2 = y)
|
||||
|
||||
instance [IsFiniteDiagram F] : DecidableRel F.AdjRelation := fun _ _ =>
|
||||
@And.decidable _ _ _ $
|
||||
@instDecidableAnd _ _ _ $
|
||||
@Fintype.decidableExistsFintype _ _ (fun _ => @Fintype.decidableExistsFintype _ _ (
|
||||
fun _ => @And.decidable _ _ (instDecidableEq𝓔OfIsFiniteDiagram _ _) $
|
||||
@And.decidable _ _ (instDecidableEq𝓥OfIsFiniteDiagram _ _)
|
||||
fun _ => @instDecidableAnd _ _ (instDecidableEq𝓔OfIsFiniteDiagram _ _) $
|
||||
@instDecidableAnd _ _ (instDecidableEq𝓥OfIsFiniteDiagram _ _)
|
||||
(instDecidableEq𝓥OfIsFiniteDiagram _ _)) _) _
|
||||
|
||||
/-- From a Feynman diagram the simple graph showing those vertices which are connected. -/
|
||||
|
@ -736,7 +740,7 @@ instance [IsFiniteDiagram F] : DecidableRel F.toSimpleGraph.Adj :=
|
|||
|
||||
instance [IsFiniteDiagram F] :
|
||||
Decidable (F.toSimpleGraph.Preconnected ∧ Nonempty F.𝓥) :=
|
||||
@And.decidable _ _ _ $ decidable_of_iff _ Finset.univ_nonempty_iff
|
||||
@instDecidableAnd _ _ _ $ decidable_of_iff _ Finset.univ_nonempty_iff
|
||||
|
||||
instance [IsFiniteDiagram F] : Decidable F.toSimpleGraph.Connected :=
|
||||
decidable_of_iff _ (SimpleGraph.connected_iff F.toSimpleGraph).symm
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue