chore: Bump to lean v.4.12.0
This commit is contained in:
parent
47d9649c44
commit
987bbf6013
23 changed files with 92 additions and 58 deletions
|
@ -31,7 +31,8 @@ open minkowskiMatrix
|
|||
lemma transpose_eta (A : lorentzAlgebra) : A.1ᵀ * η = - η * A.1 := by
|
||||
have h1 := A.2
|
||||
erw [mem_skewAdjointMatricesLieSubalgebra] at h1
|
||||
simpa [LieAlgebra.Orthogonal.so', IsSkewAdjoint, IsAdjointPair] using h1
|
||||
simpa only [neg_mul, mem_skewAdjointMatricesSubmodule, IsSkewAdjoint, IsAdjointPair,
|
||||
mul_neg] using h1
|
||||
|
||||
lemma mem_of_transpose_eta_eq_eta_mul_self {A : Matrix (Fin 1 ⊕ Fin 3) (Fin 1 ⊕ Fin 3) ℝ}
|
||||
(h : Aᵀ * η = - η * A) : A ∈ lorentzAlgebra := by
|
||||
|
@ -96,8 +97,7 @@ instance lorentzVectorAsLieRingModule : LieRingModule lorentzAlgebra (LorentzVec
|
|||
|
||||
@[simps!]
|
||||
instance spaceTimeAsLieModule : LieModule ℝ lorentzAlgebra (LorentzVector 3) where
|
||||
smul_lie r Λ x := by
|
||||
simp [Bracket.bracket, smul_mulVec_assoc]
|
||||
smul_lie r Λ x := smul_mulVec_assoc r Λ.1 x
|
||||
lie_smul r Λ x := by
|
||||
simp only [Bracket.bracket]
|
||||
rw [mulVec_smul]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue