Merge pull request #74 from HEPLean/Update-versions
refactor: Higgs physics
This commit is contained in:
commit
9910d8210b
4 changed files with 244 additions and 54 deletions
|
@ -18,20 +18,89 @@ namespace TwoHDM
|
||||||
|
|
||||||
open StandardModel
|
open StandardModel
|
||||||
open ComplexConjugate
|
open ComplexConjugate
|
||||||
|
open HiggsField
|
||||||
|
|
||||||
noncomputable section
|
noncomputable section
|
||||||
|
|
||||||
/-- The potential of the two Higgs doublet model. -/
|
/-- The potential of the two Higgs doublet model. -/
|
||||||
def potential (Φ1 Φ2 : HiggsField)
|
def potential (Φ1 Φ2 : HiggsField) (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ)
|
||||||
(m11Sq m22Sq lam₁ lam₂ lam₃ lam₄ : ℝ) (m12Sq lam₅ lam₆ lam₇ : ℂ) (x : SpaceTime) : ℝ :=
|
(m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ) (x : SpaceTime) : ℝ :=
|
||||||
m11Sq * Φ1.normSq x + m22Sq * Φ2.normSq x
|
m₁₁2 * ‖Φ1‖_H ^ 2 x + m₂₂2 * ‖Φ2‖_H ^ 2 x - (m₁₂2 * ⟪Φ1, Φ2⟫_H x + conj m₁₂2 * ⟪Φ2, Φ1⟫_H x).re
|
||||||
- (m12Sq * (Φ1.innerProd Φ2) x + conj m12Sq * (Φ2.innerProd Φ1) x).re
|
+ 1/2 * 𝓵₁ * ‖Φ1‖_H ^ 2 x * ‖Φ1‖_H ^ 2 x + 1/2 * 𝓵₂ * ‖Φ2‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
|
||||||
+ 1/2 * lam₁ * Φ1.normSq x ^ 2 + 1/2 * lam₂ * Φ2.normSq x ^ 2
|
+ 𝓵₃ * ‖Φ1‖_H ^ 2 x * ‖Φ2‖_H ^ 2 x
|
||||||
+ lam₃ * Φ1.normSq x * Φ2.normSq x
|
+ 𝓵₄ * ‖⟪Φ1, Φ2⟫_H x‖ ^ 2 + (1/2 * 𝓵₅ * ⟪Φ1, Φ2⟫_H x ^ 2 + 1/2 * conj 𝓵₅ * ⟪Φ2, Φ1⟫_H x ^ 2).re
|
||||||
+ lam₄ * ‖Φ1.innerProd Φ2 x‖
|
+ (𝓵₆ * ‖Φ1‖_H ^ 2 x * ⟪Φ1, Φ2⟫_H x + conj 𝓵₆ * ‖Φ1‖_H ^ 2 x * ⟪Φ2, Φ1⟫_H x).re
|
||||||
+ (1/2 * lam₅ * (Φ1.innerProd Φ2) x ^ 2 + 1/2 * conj lam₅ * (Φ2.innerProd Φ1) x ^ 2).re
|
+ (𝓵₇ * ‖Φ2‖_H ^ 2 x * ⟪Φ1, Φ2⟫_H x + conj 𝓵₇ * ‖Φ2‖_H ^ 2 x * ⟪Φ2, Φ1⟫_H x).re
|
||||||
+ (lam₆ * Φ1.normSq x * (Φ1.innerProd Φ2) x + conj lam₆ * Φ1.normSq x * (Φ2.innerProd Φ1) x).re
|
|
||||||
+ (lam₇ * Φ2.normSq x * (Φ1.innerProd Φ2) x + conj lam₇ * Φ2.normSq x * (Φ2.innerProd Φ1) x).re
|
namespace potential
|
||||||
|
|
||||||
|
variable (Φ1 Φ2 : HiggsField)
|
||||||
|
variable (m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ : ℝ)
|
||||||
|
variable (m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ : ℂ)
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Simple properties of the potential
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
/-- Swapping `Φ1` with `Φ2`, and a number of the parameters (with possible conjugation) leads
|
||||||
|
to an identical potential. -/
|
||||||
|
lemma swap_fields :
|
||||||
|
potential Φ1 Φ2 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇
|
||||||
|
= potential Φ2 Φ1 m₂₂2 m₁₁2 𝓵₂ 𝓵₁ 𝓵₃ 𝓵₄ (conj m₁₂2) (conj 𝓵₅) (conj 𝓵₇) (conj 𝓵₆) := by
|
||||||
|
funext x
|
||||||
|
simp only [potential, HiggsField.normSq, Complex.add_re, Complex.mul_re, Complex.conj_re,
|
||||||
|
Complex.conj_im, neg_mul, sub_neg_eq_add, one_div, Complex.norm_eq_abs, Complex.inv_re,
|
||||||
|
Complex.re_ofNat, Complex.normSq_ofNat, div_self_mul_self', Complex.inv_im, Complex.im_ofNat,
|
||||||
|
neg_zero, zero_div, zero_mul, sub_zero, Complex.mul_im, add_zero, mul_neg, Complex.ofReal_pow,
|
||||||
|
RingHomCompTriple.comp_apply, RingHom.id_apply]
|
||||||
|
ring_nf
|
||||||
|
simp only [one_div, add_left_inj, add_right_inj, mul_eq_mul_left_iff]
|
||||||
|
apply Or.inl
|
||||||
|
rw [HiggsField.innerProd, HiggsField.innerProd, ← InnerProductSpace.conj_symm, Complex.abs_conj]
|
||||||
|
|
||||||
|
/-- If `Φ₂` is zero the potential reduces to the Higgs potential on `Φ₁`. -/
|
||||||
|
lemma right_zero : potential Φ1 0 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ =
|
||||||
|
StandardModel.HiggsField.potential Φ1 (- m₁₁2) (𝓵₁/2) := by
|
||||||
|
funext x
|
||||||
|
simp only [potential, normSq, ContMDiffSection.coe_zero, Pi.zero_apply, norm_zero, ne_eq,
|
||||||
|
OfNat.ofNat_ne_zero, not_false_eq_true, zero_pow, mul_zero, add_zero, innerProd_right_zero,
|
||||||
|
innerProd_left_zero, Complex.zero_re, sub_zero, one_div, Complex.ofReal_pow,
|
||||||
|
Complex.ofReal_zero, HiggsField.potential, neg_neg, add_right_inj, mul_eq_mul_right_iff,
|
||||||
|
pow_eq_zero_iff, norm_eq_zero, or_self_right]
|
||||||
|
ring_nf
|
||||||
|
simp only [true_or]
|
||||||
|
|
||||||
|
/-- If `Φ₁` is zero the potential reduces to the Higgs potential on `Φ₂`. -/
|
||||||
|
lemma left_zero : potential 0 Φ2 m₁₁2 m₂₂2 𝓵₁ 𝓵₂ 𝓵₃ 𝓵₄ m₁₂2 𝓵₅ 𝓵₆ 𝓵₇ =
|
||||||
|
StandardModel.HiggsField.potential Φ2 (- m₂₂2) (𝓵₂/2) := by
|
||||||
|
rw [swap_fields, right_zero]
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Potential bounded from below
|
||||||
|
|
||||||
|
TODO: Complete this section.
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Smoothness of the potential
|
||||||
|
|
||||||
|
TODO: Complete this section.
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Invariance of the potential under gauge transformations
|
||||||
|
|
||||||
|
TODO: Complete this section.
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
end potential
|
||||||
|
|
||||||
end
|
end
|
||||||
end TwoHDM
|
end TwoHDM
|
||||||
|
|
|
@ -23,7 +23,7 @@ This file defines the basic properties for the higgs field in the standard model
|
||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
|
||||||
|
|
||||||
-/
|
-/
|
||||||
universe v u
|
universe v u
|
||||||
|
@ -35,6 +35,11 @@ open Matrix
|
||||||
open Complex
|
open Complex
|
||||||
open ComplexConjugate
|
open ComplexConjugate
|
||||||
open SpaceTime
|
open SpaceTime
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Definition of the Higgs bundle
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
|
/-- The trivial vector bundle 𝓡² × ℂ². (TODO: Make associated bundle.) -/
|
||||||
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
|
abbrev HiggsBundle := Bundle.Trivial SpaceTime HiggsVec
|
||||||
|
@ -60,6 +65,12 @@ noncomputable def HiggsVec.toField (φ : HiggsVec) : HiggsField where
|
||||||
namespace HiggsField
|
namespace HiggsField
|
||||||
open Complex Real
|
open Complex Real
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Relation to `HiggsVec`
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
/-- Given a `higgsField`, the corresponding map from `spaceTime` to `higgsVec`. -/
|
||||||
def toHiggsVec (φ : HiggsField) : SpaceTime → HiggsVec := φ
|
def toHiggsVec (φ : HiggsField) : SpaceTime → HiggsVec := φ
|
||||||
|
|
||||||
|
@ -80,6 +91,88 @@ lemma toField_toHiggsVec_apply (φ : HiggsField) (x : SpaceTime) :
|
||||||
lemma higgsVecToFin2ℂ_toHiggsVec (φ : HiggsField) :
|
lemma higgsVecToFin2ℂ_toHiggsVec (φ : HiggsField) :
|
||||||
higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
higgsVecToFin2ℂ ∘ φ.toHiggsVec = φ := rfl
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## The inner product and norm of Higgs fields
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
/-- Given two `HiggsField`, the map `spaceTime → ℂ` obtained by taking their inner product. -/
|
||||||
|
def innerProd (φ1 φ2 : HiggsField) : SpaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ
|
||||||
|
|
||||||
|
/-- Notation for the inner product of two Higgs fields. -/
|
||||||
|
scoped[StandardModel.HiggsField] notation "⟪" φ1 "," φ2 "⟫_H" => innerProd φ1 φ2
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma innerProd_left_zero (φ : HiggsField) : ⟪0, φ⟫_H = 0 := by
|
||||||
|
funext x
|
||||||
|
simp [innerProd]
|
||||||
|
|
||||||
|
@[simp]
|
||||||
|
lemma innerProd_right_zero (φ : HiggsField) : ⟪φ, 0⟫_H = 0 := by
|
||||||
|
funext x
|
||||||
|
simp [innerProd]
|
||||||
|
|
||||||
|
lemma innerProd_expand (φ1 φ2 : HiggsField) :
|
||||||
|
⟪φ1, φ2⟫_H = fun x => (conj (φ1 x 0) * (φ2 x 0) + conj (φ1 x 1) * (φ2 x 1) ) := by
|
||||||
|
funext x
|
||||||
|
simp only [innerProd, PiLp.inner_apply, RCLike.inner_apply, Fin.sum_univ_two]
|
||||||
|
|
||||||
|
/-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the
|
||||||
|
higgs vector. -/
|
||||||
|
@[simp]
|
||||||
|
def normSq (φ : HiggsField) : SpaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
||||||
|
|
||||||
|
/-- Notation for the norm squared of a Higgs field. -/
|
||||||
|
scoped[StandardModel.HiggsField] notation "‖" φ1 "‖_H ^ 2" => normSq φ1
|
||||||
|
|
||||||
|
lemma innerProd_self_eq_normSq (φ : HiggsField) (x : SpaceTime) :
|
||||||
|
⟪φ, φ⟫_H x = ‖φ‖_H ^ 2 x := by
|
||||||
|
erw [normSq, @PiLp.norm_sq_eq_of_L2, Fin.sum_univ_two]
|
||||||
|
simp only [ ofReal_add, ofReal_pow, innerProd, PiLp.inner_apply,
|
||||||
|
RCLike.inner_apply, Fin.sum_univ_two, conj_mul']
|
||||||
|
|
||||||
|
lemma normSq_eq_innerProd_self (φ : HiggsField) (x : SpaceTime) :
|
||||||
|
‖φ x‖ ^ 2 = (⟪φ, φ⟫_H x).re := by
|
||||||
|
rw [innerProd_self_eq_normSq]
|
||||||
|
rfl
|
||||||
|
|
||||||
|
lemma toHiggsVec_norm (φ : HiggsField) (x : SpaceTime) :
|
||||||
|
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
|
||||||
|
|
||||||
|
lemma normSq_expand (φ : HiggsField) :
|
||||||
|
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
||||||
|
funext x
|
||||||
|
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ℂ]
|
||||||
|
|
||||||
|
lemma normSq_nonneg (φ : HiggsField) (x : SpaceTime) : 0 ≤ φ.normSq x := by
|
||||||
|
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
||||||
|
|
||||||
|
lemma normSq_zero (φ : HiggsField) (x : SpaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
||||||
|
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## The Higgs potential
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
|
||||||
|
@[simp]
|
||||||
|
def potential (φ : HiggsField) (μSq lambda : ℝ ) (x : SpaceTime) : ℝ :=
|
||||||
|
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
|
||||||
|
|
||||||
|
lemma potential_apply (φ : HiggsField) (μSq lambda : ℝ) (x : SpaceTime) :
|
||||||
|
(φ.potential μSq lambda) x = HiggsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
||||||
|
simp [HiggsVec.potential, toHiggsVec_norm]
|
||||||
|
ring
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Smoothness
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
lemma toVec_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
lemma toVec_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, Fin 2 → ℂ) φ :=
|
||||||
smooth_higgsVecToFin2ℂ.comp φ.toHiggsVec_smooth
|
smooth_higgsVecToFin2ℂ.comp φ.toHiggsVec_smooth
|
||||||
|
|
||||||
|
@ -95,22 +188,6 @@ lemma apply_im_smooth (φ : HiggsField) (i : Fin 2):
|
||||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (imCLM ∘ (fun (x : SpaceTime) => (φ x i))) :=
|
||||||
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
|
(ContinuousLinearMap.smooth imCLM).comp (φ.apply_smooth i)
|
||||||
|
|
||||||
/-- Given two `higgsField`, the map `spaceTime → ℂ` obtained by taking their inner product. -/
|
|
||||||
def innerProd (φ1 φ2 : HiggsField) : SpaceTime → ℂ := fun x => ⟪φ1 x, φ2 x⟫_ℂ
|
|
||||||
|
|
||||||
/-- Given a `higgsField`, the map `spaceTime → ℝ` obtained by taking the square norm of the
|
|
||||||
higgs vector. -/
|
|
||||||
@[simp]
|
|
||||||
def normSq (φ : HiggsField) : SpaceTime → ℝ := fun x => ( ‖φ x‖ ^ 2)
|
|
||||||
|
|
||||||
lemma toHiggsVec_norm (φ : HiggsField) (x : SpaceTime) :
|
|
||||||
‖φ x‖ = ‖φ.toHiggsVec x‖ := rfl
|
|
||||||
|
|
||||||
lemma normSq_expand (φ : HiggsField) :
|
|
||||||
φ.normSq = fun x => (conj (φ x 0) * (φ x 0) + conj (φ x 1) * (φ x 1) ).re := by
|
|
||||||
funext x
|
|
||||||
simp [normSq, add_re, mul_re, conj_re, conj_im, neg_mul, sub_neg_eq_add, @norm_sq_eq_inner ℂ]
|
|
||||||
|
|
||||||
lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) φ.normSq := by
|
||||||
rw [normSq_expand]
|
rw [normSq_expand]
|
||||||
refine Smooth.add ?_ ?_
|
refine Smooth.add ?_ ?_
|
||||||
|
@ -131,27 +208,17 @@ lemma normSq_smooth (φ : HiggsField) : Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ,
|
||||||
exact φ.apply_im_smooth 1
|
exact φ.apply_im_smooth 1
|
||||||
exact φ.apply_im_smooth 1
|
exact φ.apply_im_smooth 1
|
||||||
|
|
||||||
lemma normSq_nonneg (φ : HiggsField) (x : SpaceTime) : 0 ≤ φ.normSq x := by
|
|
||||||
simp [normSq, ge_iff_le, norm_nonneg, pow_nonneg]
|
|
||||||
|
|
||||||
lemma normSq_zero (φ : HiggsField) (x : SpaceTime) : φ.normSq x = 0 ↔ φ x = 0 := by
|
|
||||||
simp [normSq, ne_eq, OfNat.ofNat_ne_zero, not_false_eq_true, pow_eq_zero_iff, norm_eq_zero]
|
|
||||||
|
|
||||||
/-- The Higgs potential of the form `- μ² * |φ|² + λ * |φ|⁴`. -/
|
|
||||||
@[simp]
|
|
||||||
def potential (φ : HiggsField) (μSq lambda : ℝ ) (x : SpaceTime) : ℝ :=
|
|
||||||
- μSq * φ.normSq x + lambda * φ.normSq x * φ.normSq x
|
|
||||||
|
|
||||||
lemma potential_smooth (φ : HiggsField) (μSq lambda : ℝ) :
|
lemma potential_smooth (φ : HiggsField) (μSq lambda : ℝ) :
|
||||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||||||
simp only [potential, normSq, neg_mul]
|
simp only [potential, normSq, neg_mul]
|
||||||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||||||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||||
|
|
||||||
lemma potential_apply (φ : HiggsField) (μSq lambda : ℝ) (x : SpaceTime) :
|
/-!
|
||||||
(φ.potential μSq lambda) x = HiggsVec.potential μSq lambda (φ.toHiggsVec x) := by
|
|
||||||
simp [HiggsVec.potential, toHiggsVec_norm]
|
## Constant higgs fields
|
||||||
ring
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
/-- A higgs field is constant if it is equal for all `x` `y` in `spaceTime`. -/
|
||||||
def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y
|
def IsConst (Φ : HiggsField) : Prop := ∀ x y, Φ x = Φ y
|
||||||
|
|
|
@ -24,7 +24,7 @@ This file is a import of `SM.HiggsBoson.Basic`.
|
||||||
|
|
||||||
## References
|
## References
|
||||||
|
|
||||||
- We use conventions given in: https://pdg.lbl.gov/2019/reviews/rpp2019-rev-higgs-boson.pdf
|
- We use conventions given in: [Review of Particle Physics, PDG][ParticleDataGroup:2018ovx]
|
||||||
|
|
||||||
-/
|
-/
|
||||||
universe v u
|
universe v u
|
||||||
|
@ -36,6 +36,12 @@ open Matrix
|
||||||
open Complex
|
open Complex
|
||||||
open ComplexConjugate
|
open ComplexConjugate
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## The definition of the Higgs vector space.
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- The complex vector space in which the Higgs field takes values. -/
|
/-- The complex vector space in which the Higgs field takes values. -/
|
||||||
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
abbrev HiggsVec := EuclideanSpace ℂ (Fin 2)
|
||||||
|
|
||||||
|
@ -50,6 +56,15 @@ lemma smooth_higgsVecToFin2ℂ : Smooth 𝓘(ℝ, HiggsVec) 𝓘(ℝ, Fin 2 →
|
||||||
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
ContinuousLinearMap.smooth higgsVecToFin2ℂ
|
||||||
|
|
||||||
namespace HiggsVec
|
namespace HiggsVec
|
||||||
|
/-- An orthonormal basis of higgsVec. -/
|
||||||
|
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
||||||
|
EuclideanSpace.basisFun (Fin 2) ℂ
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## The representation of the gauge group on the Higgs vector space
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
/-- The Higgs representation as a homomorphism from the gauge group to unitary `2×2`-matrices. -/
|
||||||
@[simps!]
|
@[simps!]
|
||||||
|
@ -63,10 +78,6 @@ noncomputable def higgsRepUnitary : GaugeGroup →* unitaryGroup (Fin 2) ℂ whe
|
||||||
repeat rw [mul_assoc]
|
repeat rw [mul_assoc]
|
||||||
map_one' := by simp
|
map_one' := by simp
|
||||||
|
|
||||||
/-- An orthonormal basis of higgsVec. -/
|
|
||||||
noncomputable def orthonormBasis : OrthonormalBasis (Fin 2) ℂ HiggsVec :=
|
|
||||||
EuclideanSpace.basisFun (Fin 2) ℂ
|
|
||||||
|
|
||||||
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
/-- Takes in a `2×2`-matrix and returns a linear map of `higgsVec`. -/
|
||||||
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
noncomputable def matrixToLin : Matrix (Fin 2) (Fin 2) ℂ →* (HiggsVec →L[ℂ] HiggsVec) where
|
||||||
toFun g := LinearMap.toContinuousLinearMap
|
toFun g := LinearMap.toContinuousLinearMap
|
||||||
|
@ -109,24 +120,37 @@ lemma higgsRepUnitary_mul (g : GaugeGroup) (φ : HiggsVec) :
|
||||||
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
lemma rep_apply (g : GaugeGroup) (φ : HiggsVec) : rep g φ = g.2.2 ^ 3 • (g.2.1.1 *ᵥ φ) :=
|
||||||
higgsRepUnitary_mul g φ
|
higgsRepUnitary_mul g φ
|
||||||
|
|
||||||
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
|
||||||
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
|
||||||
|
|
||||||
section potentialDefn
|
section potentialDefn
|
||||||
|
|
||||||
variable (μSq lambda : ℝ)
|
variable (μSq lambda : ℝ)
|
||||||
local notation "λ" => lambda
|
local notation "λ" => lambda
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## The potential for a Higgs vector
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
/-- The higgs potential for `higgsVec`, i.e. for constant higgs fields. -/
|
||||||
def potential (φ : HiggsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
def potential (φ : HiggsVec) : ℝ := - μSq * ‖φ‖ ^ 2 + λ * ‖φ‖ ^ 4
|
||||||
|
|
||||||
|
lemma potential_as_quad (φ : HiggsVec) :
|
||||||
|
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
||||||
|
simp [potential]; ring
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Invariance of the potential under global gauge transformation
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
|
lemma norm_invariant (g : GaugeGroup) (φ : HiggsVec) : ‖rep g φ‖ = ‖φ‖ :=
|
||||||
|
ContinuousLinearMap.norm_map_of_mem_unitary (unitaryToLin (higgsRepUnitary g)).2 φ
|
||||||
|
|
||||||
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
|
lemma potential_invariant (φ : HiggsVec) (g : GaugeGroup) :
|
||||||
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
potential μSq (λ) (rep g φ) = potential μSq (λ) φ := by
|
||||||
simp only [potential, neg_mul, norm_invariant]
|
simp only [potential, neg_mul, norm_invariant]
|
||||||
|
|
||||||
lemma potential_as_quad (φ : HiggsVec) :
|
|
||||||
λ * ‖φ‖ ^ 2 * ‖φ‖ ^ 2 + (- μSq ) * ‖φ‖ ^ 2 + (- potential μSq (λ) φ) = 0 := by
|
|
||||||
simp [potential]; ring
|
|
||||||
|
|
||||||
end potentialDefn
|
end potentialDefn
|
||||||
section potentialProp
|
section potentialProp
|
||||||
|
@ -136,6 +160,12 @@ variable (μSq : ℝ)
|
||||||
variable (hLam : 0 < lambda)
|
variable (hLam : 0 < lambda)
|
||||||
local notation "λ" => lambda
|
local notation "λ" => lambda
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Lower bound on potential
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
lemma potential_snd_term_nonneg (φ : HiggsVec) :
|
lemma potential_snd_term_nonneg (φ : HiggsVec) :
|
||||||
0 ≤ λ * ‖φ‖ ^ 4 := by
|
0 ≤ λ * ‖φ‖ ^ 4 := by
|
||||||
rw [mul_nonneg_iff]
|
rw [mul_nonneg_iff]
|
||||||
|
@ -197,6 +227,12 @@ lemma potential_bounded_below_of_μSq_nonpos {μSq : ℝ}
|
||||||
field_simp [mul_nonpos_iff]
|
field_simp [mul_nonpos_iff]
|
||||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||||
|
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Minimum of the potential
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
|
lemma potential_eq_bound_discrim_zero (φ : HiggsVec)
|
||||||
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
(hV : potential μSq (λ) φ = - μSq ^ 2 / (4 * λ)) :
|
||||||
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
discrim (λ) (- μSq) (- potential μSq (λ) φ) = 0 := by
|
||||||
|
@ -264,6 +300,12 @@ lemma IsMinOn_potential_iff_of_μSq_nonpos {μSq : ℝ} (hμSq : μSq ≤ 0) :
|
||||||
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
|
· exact potential_eq_bound_IsMinOn_of_μSq_nonpos hLam hμSq φ
|
||||||
|
|
||||||
end potentialProp
|
end potentialProp
|
||||||
|
/-!
|
||||||
|
|
||||||
|
## Gauge freedom
|
||||||
|
|
||||||
|
-/
|
||||||
|
|
||||||
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
/-- Given a Higgs vector, a rotation matrix which puts the first component of the
|
||||||
vector to zero, and the second component to a real -/
|
vector to zero, and the second component to a real -/
|
||||||
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
def rotateMatrix (φ : HiggsVec) : Matrix (Fin 2) (Fin 2) ℂ :=
|
||||||
|
|
|
@ -34,6 +34,18 @@
|
||||||
year = "2020"
|
year = "2020"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@Article{ ParticleDataGroup:2018ovx,
|
||||||
|
author = "Tanabashi, M. and others",
|
||||||
|
collaboration = "Particle Data Group",
|
||||||
|
title = "{Review of Particle Physics}",
|
||||||
|
doi = "10.1103/PhysRevD.98.030001",
|
||||||
|
journal = "Phys. Rev. D",
|
||||||
|
volume = "98",
|
||||||
|
number = "3",
|
||||||
|
pages = "030001",
|
||||||
|
year = "2018"
|
||||||
|
}
|
||||||
|
|
||||||
@Article{ raynor2021graphical,
|
@Article{ raynor2021graphical,
|
||||||
title = {Graphical combinatorics and a distributive law for modular
|
title = {Graphical combinatorics and a distributive law for modular
|
||||||
operads},
|
operads},
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue