feat: Add real lorentz tensors
This commit is contained in:
parent
44b26efdaf
commit
99f4e85839
13 changed files with 602 additions and 48 deletions
87
HepLean/SpaceTime/LorentzVector/Covariant.lean
Normal file
87
HepLean/SpaceTime/LorentzVector/Covariant.lean
Normal file
|
@ -0,0 +1,87 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license as described in the file LICENSE.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.SpaceTime.LorentzVector.Basic
|
||||
import HepLean.SpaceTime.LorentzGroup.Basic
|
||||
import Mathlib.RepresentationTheory.Basic
|
||||
/-!
|
||||
|
||||
# Covariant Lorentz vectors
|
||||
|
||||
The type `LorentzVector` corresponds to contravariant Lorentz tensors.
|
||||
In this section we define covariant Lorentz tensors.
|
||||
|
||||
-/
|
||||
/-! TODO: Define equivariant map between contravariant and covariant lorentz tensors. -/
|
||||
|
||||
noncomputable section
|
||||
|
||||
/- The number of space dimensions . -/
|
||||
variable (d : ℕ)
|
||||
|
||||
/-- The type of covariant Lorentz Vectors in `d`-space dimensions. -/
|
||||
def CovariantLorentzVector : Type := (Fin 1 ⊕ Fin d) → ℝ
|
||||
|
||||
/-- An instance of an additive commutative monoid on `LorentzVector`. -/
|
||||
instance : AddCommMonoid (CovariantLorentzVector d) := Pi.addCommMonoid
|
||||
|
||||
/-- An instance of a module on `LorentzVector`. -/
|
||||
noncomputable instance : Module ℝ (CovariantLorentzVector d) := Pi.module _ _ _
|
||||
|
||||
instance : AddCommGroup (CovariantLorentzVector d) := Pi.addCommGroup
|
||||
|
||||
/-- The structure of a topological space `LorentzVector d`. -/
|
||||
instance : TopologicalSpace (CovariantLorentzVector d) :=
|
||||
haveI : NormedAddCommGroup (CovariantLorentzVector d) := Pi.normedAddCommGroup
|
||||
UniformSpace.toTopologicalSpace
|
||||
|
||||
namespace CovariantLorentzVector
|
||||
|
||||
variable {d : ℕ} (v : CovariantLorentzVector d)
|
||||
|
||||
/-- The standard basis of `LorentzVector` indexed by `Fin 1 ⊕ Fin (d)`. -/
|
||||
@[simps!]
|
||||
noncomputable def stdBasis : Basis (Fin 1 ⊕ Fin (d)) ℝ (CovariantLorentzVector d) := Pi.basisFun ℝ _
|
||||
|
||||
lemma decomp_stdBasis (v : CovariantLorentzVector d) : ∑ i, v i • stdBasis i = v := by
|
||||
funext ν
|
||||
rw [Finset.sum_apply]
|
||||
rw [Finset.sum_eq_single_of_mem ν]
|
||||
simp [HSMul.hSMul, SMul.smul, stdBasis, Pi.basisFun_apply]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp only [LinearMap.stdBasis_same, mul_one]
|
||||
exact Finset.mem_univ ν
|
||||
intros b _ hbi
|
||||
simp [HSMul.hSMul, SMul.smul, stdBasis, Pi.basisFun_apply]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp [LinearMap.stdBasis_apply]
|
||||
exact Or.inr hbi
|
||||
|
||||
@[simp]
|
||||
lemma decomp_stdBasis' (v : CovariantLorentzVector d) :
|
||||
v (Sum.inl 0) • stdBasis (Sum.inl 0) + ∑ a₂ : Fin d, v (Sum.inr a₂) • stdBasis (Sum.inr a₂) = v := by
|
||||
trans ∑ i, v i • stdBasis i
|
||||
simp only [Fin.isValue, Fintype.sum_sum_type, Finset.univ_unique, Fin.default_eq_zero,
|
||||
Finset.sum_singleton]
|
||||
exact decomp_stdBasis v
|
||||
|
||||
/-!
|
||||
|
||||
## Lorentz group action on covariant Lorentz vectors
|
||||
|
||||
-/
|
||||
|
||||
/-- The representation of the Lorentz group acting on covariant Lorentz vectors. -/
|
||||
def rep : Representation ℝ (LorentzGroup d) (CovariantLorentzVector d) where
|
||||
toFun g := Matrix.toLinAlgEquiv stdBasis (LorentzGroup.transpose g⁻¹)
|
||||
map_one' := by
|
||||
simp only [inv_one, LorentzGroup.transpose_one, lorentzGroupIsGroup_one_coe, map_one]
|
||||
map_mul' x y := by
|
||||
simp only [mul_inv_rev, lorentzGroupIsGroup_inv, LorentzGroup.transpose_mul,
|
||||
lorentzGroupIsGroup_mul_coe, map_mul]
|
||||
|
||||
end CovariantLorentzVector
|
||||
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue