feat: General properties of contractions

This commit is contained in:
jstoobysmith 2024-11-18 15:42:37 +00:00
parent dcf6b774d4
commit 9b4cd5d0b8
10 changed files with 366 additions and 269 deletions

View file

@ -1,318 +0,0 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joseph Tooby-Smith
-/
import HepLean.Tensors.Tree.Elab
import HepLean.Tensors.Tree.NodeIdentities.Basic
import HepLean.Tensors.Tree.NodeIdentities.Congr
/-!
## Contraction of specific tensor types
-/
open IndexNotation
open CategoryTheory
open MonoidalCategory
open OverColor
open HepLean.Fin
open TensorProduct
noncomputable section
namespace TensorSpecies
open TensorTree
variable {S : TensorSpecies}
/-- Th map built contracting a 1-tensor with a 2-tensor using basic categorical consstructions.s -/
def contrOneTwoLeft {c1 c2 : S.C}
(x : S.F.obj (OverColor.mk ![c1])) (y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
S.F.obj (OverColor.mk ![c2]) :=
(S.tensorToVec c2).inv.hom <|
(λ_ (S.FD.obj (Discrete.mk c2))).hom.hom <|
((S.contr.app (Discrete.mk c1)) ▷ (S.FD.obj (Discrete.mk c2))).hom <|
(α_ _ _ (S.FD.obj (Discrete.mk (c2)))).inv.hom <|
(S.tensorToVec c1).hom.hom (x) ⊗ₜ
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y
@[simp]
lemma contrOneTwoLeft_smul_left {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) (r : S.k) :
contrOneTwoLeft (r • x) y = r • contrOneTwoLeft x y := by
simp only [contrOneTwoLeft]
simp [map_smul, smul_tmul]
@[simp]
lemma contrOneTwoLeft_smul_right {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) (r : S.k) :
contrOneTwoLeft x (r • y) = r • contrOneTwoLeft x y := by
simp only [contrOneTwoLeft]
simp [map_smul, smul_tmul]
@[simp]
lemma contrOneTwoLeft_add_left {c1 c2 : S.C} (x y : S.F.obj (OverColor.mk ![c1]))
(z : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
contrOneTwoLeft (x + y) z = contrOneTwoLeft x z + contrOneTwoLeft y z := by
simp only [contrOneTwoLeft]
simp [map_add, add_tmul]
@[simp]
lemma contrOneTwoLeft_add_right {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
(y z : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
contrOneTwoLeft x (y + z) = contrOneTwoLeft x y + contrOneTwoLeft x z := by
simp only [contrOneTwoLeft]
simp [map_add, add_tmul, tmul_add]
lemma contrOneTwoLeft_tprod_eq {c1 c2 : S.C}
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c1]).left) →
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c1]).hom i }))
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c1, c2]).left)
→ CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c1, c2]).hom i })) :
contrOneTwoLeft (PiTensorProduct.tprod S.k fx) (PiTensorProduct.tprod S.k fy) =
((S.tensorToVec c2).inv.hom
(((S.contr.app (Discrete.mk c1)).hom (fx (0 : Fin 1) ⊗ₜ fy (0 : Fin 2)) •
fy (1 : Fin 2)))) := by
rw [contrOneTwoLeft]
apply congrArg
rw [Discrete.pairIsoSep_inv_tprod S.FD fy, tensorToVec, OverColor.forgetLiftAppCon]
change (S.contr.app { as := c1 }).hom (_ ⊗ₜ[S.k] fy (0 : Fin 2)) • fy (1 : Fin 2) = _
congr
simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.succ_eq_add_one, Nat.reduceAdd,
Iso.trans_hom, Functor.mapIso_hom, Action.comp_hom, mk_left, Functor.id_obj, mk_hom,
ModuleCat.coe_comp, Function.comp_apply, LinearMap.id_coe, id_eq, Fin.isValue]
rw [forgetLiftApp_hom_hom_apply_eq]
simp only [mk_left, Functor.id_obj, Fin.isValue]
erw [OverColor.lift.map_tprod]
congr
funext x
match x with
| (0 : Fin 1) =>
simp only [mk_hom, Fin.isValue, mk_left, equivToIso_mkIso_hom, Equiv.refl_symm,
Equiv.refl_apply, Matrix.cons_val_zero, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_hom, Action.id_hom, Iso.refl_inv, LinearEquiv.ofLinear_apply]
rfl
lemma contr_one_two_left_eq_contrOneTwoLeft_tprod {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
(y : S.F.obj (OverColor.mk ![S.τ c1, c2]))
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c1]).left) →
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c1]).hom i }))
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c1, c2]).left)
→ CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c1, c2]).hom i }))
(hx : x = PiTensorProduct.tprod S.k fx)
(hy : y = PiTensorProduct.tprod S.k fy) :
{x | μ ⊗ y | μ ν}ᵀ.tensor =
(S.F.mapIso (OverColor.mkIso (by funext x; fin_cases x; rfl))).hom.hom
(contrOneTwoLeft x y) := by
subst hx
subst hy
conv_rhs =>
rw [contrOneTwoLeft_tprod_eq]
rw [tensorToVec_inv_apply_expand]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, mk_left,
Functor.id_obj, mk_hom, contr_tensor, prod_tensor, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, tensorNode_tensor, Monoidal.tensorUnit_obj,
Action.instMonoidalCategory_tensorUnit_V, Matrix.cons_val_one, Matrix.head_cons,
Functor.comp_obj, Discrete.functor_obj_eq_as, Function.comp_apply, map_smul]
conv_lhs =>
erw [OverColor.lift.μ_tmul_tprod S.FD]
simp only [S.F_def]
erw [OverColor.lift.map_tprod]
erw [contrMap_tprod]
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, mk_left,
Functor.id_obj, mk_hom, Function.comp_apply, Monoidal.tensorUnit_obj,
Action.instMonoidalCategory_tensorUnit_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
Functor.comp_obj, Discrete.functor_obj_eq_as, equivToIso_homToEquiv,
instMonoidalCategoryStruct_tensorObj_hom, Fin.zero_succAbove, Fin.succ_zero_eq_one,
eqToHom_refl, Discrete.functor_map_id, Action.id_hom]
congr 1
/- The contraction. -/
· congr
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
rfl
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as,
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv,
lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv,
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
rfl
/- The tensor. -/
· symm
rw [OverColor.Discrete.rep_iso_apply_iff]
erw [OverColor.lift.map_tprod]
erw [OverColor.lift.map_tprod]
apply congrArg
funext x
match x with
| (0 : Fin 1) =>
simp only [mk_left, Fin.zero_eta, List.pmap.eq_1, Matrix.cons_val_zero, equivToIso_mkIso_hom,
Equiv.refl_symm, Equiv.refl_apply, lift.discreteFunctorMapEqIso, eqToIso_refl,
Functor.mapIso_refl, Iso.refl_inv, LinearEquiv.ofLinear_apply,
Function.comp_apply, equivToIso_mkIso_inv, Fin.succ_zero_eq_one, Fin.succ_one_eq_two]
rfl
lemma contr_one_two_left_eq_contrOneTwoLeft {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
{x | μ ⊗ y | μ ν}ᵀ.tensor = (S.F.map (OverColor.mkIso (by funext x; fin_cases x; rfl)).hom).hom
(contrOneTwoLeft x y) := by
simp only [Nat.succ_eq_add_one, Nat.reduceAdd, Fin.isValue, Fin.succAbove_zero, contr_tensor,
prod_tensor, mk_left, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, tensorNode_tensor]
refine PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy
rw [contrOneTwoLeft_add_left, map_add, ← hx, ← hy]
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, mk_left, Functor.id_obj, mk_hom,
add_tmul, map_add])
intro rx fx
refine PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
rw [contrOneTwoLeft_add_right, map_add, ← hx, ← hy]
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, mk_left, Functor.id_obj, mk_hom,
PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_add, map_add])
intro ry fy
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
rw [contrOneTwoLeft_smul_right]
simp only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, mk_left, Functor.id_obj, mk_hom,
map_smul]
apply congrArg
rw [contrOneTwoLeft_smul_left]
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
apply congrArg
simpa using contr_one_two_left_eq_contrOneTwoLeft_tprod (PiTensorProduct.tprod S.k fx)
(PiTensorProduct.tprod S.k fy) fx fy
/-- Expanding `contrOneTwoLeft` as a tensor tree. -/
lemma contrOneTwoLeft_tensorTree {c1 c2 : S.C} (x : S.F.obj (OverColor.mk ![c1]))
(y : S.F.obj (OverColor.mk ![S.τ c1, c2])) :
(contrOneTwoLeft x y) = ({x | μ ⊗ y | μ ν}ᵀ |>
perm (OverColor.equivToHomEq (Equiv.refl _) (fun x => by fin_cases x; rfl))).tensor := by
change (tensorNode (contrOneTwoLeft x y)).tensor = _
symm
rw [perm_eq_iff_eq_perm]
rw [contr_one_two_left_eq_contrOneTwoLeft]
rfl
/-- Expands the inner contraction of two 2-tensors which are
tprods in terms of basic categorical
constructions and fields of the tensor species. -/
lemma contr_two_two_inner_tprod (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
(fx : (i : (𝟭 Type).obj (OverColor.mk ![c, c]).left) →
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![c, c]).hom i }))
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)]))
(fy : (i : (𝟭 Type).obj (OverColor.mk ![S.τ c, S.τ c]).left) →
CoeSort.coe (S.FD.obj { as := (OverColor.mk ![S.τ c, S.τ c]).hom i }))
(hx : x = PiTensorProduct.tprod S.k fx)
(hy : y = PiTensorProduct.tprod S.k fy) :
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
funext x
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
(S.FD.obj (Discrete.mk (S.τ c))))).hom
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by
subst hx
subst hy
rw [Discrete.pairIsoSep_inv_tprod S.FD fx, Discrete.pairIsoSep_inv_tprod S.FD fy]
change _ = (S.F.map (OverColor.mkIso _).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
((fx (0 : Fin 2) ⊗ₜ[S.k] (λ_ (S.FD.obj { as := S.τ c }).V).hom
((S.contr.app { as := c }).hom (fx (1 : Fin 2)
⊗ₜ[S.k] fy (0 : Fin 2)) ⊗ₜ[S.k] fy (1 : Fin 2)))))
simp only [F_def, Functor.id_obj, mk_hom, Action.instMonoidalCategory_tensorObj_V,
Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Monoidal.tensorUnit_obj,
Action.instMonoidalCategory_tensorUnit_V, Functor.comp_obj, Discrete.functor_obj_eq_as,
Function.comp_apply, ModuleCat.MonoidalCategory.leftUnitor_hom_apply, tmul_smul, map_smul]
conv_lhs =>
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom,
F_def]
erw [OverColor.lift.μ_tmul_tprod S.FD]
rw (config := { transparency := .instances }) [OverColor.lift.map_tprod]
rw (config := { transparency := .instances }) [contrMap_tprod]
congr 1
/- The contraction. -/
· congr
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
Function.comp_apply, Action.FunctorCategoryEquivalence.functor_obj_obj, mk_hom,
equivToIso_homToEquiv, lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl,
Iso.refl_hom, Action.id_hom, Iso.refl_inv, Functor.id_obj,
instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
rfl
· simp only [Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor, Fin.isValue,
Function.comp_apply, Functor.comp_obj, Discrete.functor_obj_eq_as,
Action.FunctorCategoryEquivalence.functor_obj_obj, Nat.reduceAdd, eqToHom_refl,
Discrete.functor_map_id, Action.id_hom, mk_hom, equivToIso_homToEquiv,
lift.discreteFunctorMapEqIso, eqToIso_refl, Functor.mapIso_refl, Iso.refl_hom, Iso.refl_inv,
Functor.id_obj, instMonoidalCategoryStruct_tensorObj_hom, LinearEquiv.ofLinear_apply]
rfl
/- The tensor. -/
· rw (config := { transparency := .instances }) [Discrete.pairIsoSep_tmul,
OverColor.lift.map_tprod]
apply congrArg
funext k
match k with
| (0 : Fin 2) => rfl
| (1 : Fin 2) => rfl
/-- Expands the inner contraction of two 2-tensors in terms of basic categorical
constructions and fields of the tensor species. -/
lemma contr_two_two_inner (c : S.C) (x : S.F.obj (OverColor.mk ![c, c]))
(y : S.F.obj (OverColor.mk ![(S.τ c), (S.τ c)])) :
{x | μ ν ⊗ y| ν ρ}ᵀ.tensor = (S.F.map (OverColor.mkIso (by
funext x
fin_cases x <;> rfl)).hom).hom ((OverColor.Discrete.pairIsoSep S.FD).hom.hom
(((S.FD.obj (Discrete.mk c)) ◁ (λ_ (S.FD.obj (Discrete.mk (S.τ c)))).hom).hom
(((S.FD.obj (Discrete.mk c)) ◁ ((S.contr.app (Discrete.mk c)) ▷
(S.FD.obj (Discrete.mk (S.τ c))))).hom
(((S.FD.obj (Discrete.mk c)) ◁ (α_ (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c))) (S.FD.obj (Discrete.mk (S.τ c)))).inv).hom
((α_ (S.FD.obj (Discrete.mk (c))) (S.FD.obj (Discrete.mk (c)))
(S.FD.obj (Discrete.mk (S.τ c)) ⊗ S.FD.obj (Discrete.mk (S.τ c)))).hom.hom
(((OverColor.Discrete.pairIsoSep S.FD).inv.hom x ⊗ₜ
(OverColor.Discrete.pairIsoSep S.FD).inv.hom y))))))) := by
simp only [Nat.reduceAdd, Fin.isValue, contr_tensor, prod_tensor, Functor.id_obj, mk_hom,
Action.instMonoidalCategory_tensorObj_V, Equivalence.symm_inverse,
Action.functorCategoryEquivalence_functor, Action.FunctorCategoryEquivalence.functor_obj_obj,
tensorNode_tensor, Action.instMonoidalCategory_tensorUnit_V,
Action.instMonoidalCategory_whiskerLeft_hom, Action.instMonoidalCategory_leftUnitor_hom_hom,
Monoidal.tensorUnit_obj, Action.instMonoidalCategory_whiskerRight_hom,
Action.instMonoidalCategory_associator_inv_hom, Action.instMonoidalCategory_associator_hom_hom]
refine PiTensorProduct.induction_on' x ?_ (by
intro a b hx hy
simp only [Fin.isValue, Nat.reduceAdd, Functor.id_obj, mk_hom, add_tmul,
map_add, hx, hy])
intro rx fx
refine PiTensorProduct.induction_on' y ?_ (by
intro a b hx hy
simp_all only [Fin.isValue, Nat.succ_eq_add_one, Nat.reduceAdd, Functor.id_obj, mk_hom,
PiTensorProduct.tprodCoeff_eq_smul_tprod, map_smul, map_add, tmul_add])
intro ry fy
simp only [PiTensorProduct.tprodCoeff_eq_smul_tprod, tmul_smul, LinearMapClass.map_smul]
apply congrArg
simp only [smul_tmul, tmul_smul, LinearMapClass.map_smul]
apply congrArg
simpa using contr_two_two_inner_tprod c (PiTensorProduct.tprod S.k fx) fx
(PiTensorProduct.tprod S.k fy) fy
end TensorSpecies
end