feat: Informal lemmas about Higgs bosons
This commit is contained in:
parent
b11d1771aa
commit
9c2f7baf33
5 changed files with 92 additions and 2 deletions
|
@ -190,6 +190,11 @@ theorem rotate_fst_real_snd_zero (φ : HiggsVec) :
|
|||
· simp only [Fin.mk_one, Fin.isValue, Pi.smul_apply, Function.comp_apply, cons_val_one, head_cons,
|
||||
tail_cons, smul_zero]
|
||||
|
||||
informal_lemma guage_orbit where
|
||||
math :≈ "There exists a `g` in ``GaugeGroupI such that `rep g φ = φ'` if and only if
|
||||
‖φ‖ = ‖φ'‖."
|
||||
deps :≈ [``rotate_fst_zero_snd_real]
|
||||
|
||||
informal_lemma stability_group_single where
|
||||
physics :≈ "The Higgs boson breaks electroweak symmetry down to the electromagnetic force."
|
||||
math :≈ "The stablity group of the action of `rep` on `![0, Complex.ofReal ‖φ‖]`,
|
||||
|
@ -203,7 +208,7 @@ informal_lemma stability_group where
|
|||
by the action of ``StandardModel.HiggsVec.rep is given by `SU(3) x ℤ₆` where ℤ₆
|
||||
is the subgroup of `SU(2) x U(1)` with elements `(α^(-3) * I₂, α)` where
|
||||
α is a sixth root of unity."
|
||||
deps :≈ [``StandardModel.HiggsVec, ``StandardModel.HiggsVec.rep]
|
||||
deps :≈ [``HiggsVec, ``rep]
|
||||
|
||||
end HiggsVec
|
||||
|
||||
|
@ -211,5 +216,30 @@ end HiggsVec
|
|||
/-! TODO: Prove `⟪φ1, φ2⟫_H` invariant under the global gauge action. (norm_map_of_mem_unitary) -/
|
||||
/-! TODO: Prove invariance of potential under global gauge action. -/
|
||||
|
||||
namespace HiggsField
|
||||
|
||||
/-!
|
||||
|
||||
## Gauge transformations acting on Higgs fields.
|
||||
|
||||
-/
|
||||
|
||||
informal_definition gaugeAction where
|
||||
math :≈ "The action of ``gaugeTransformI on ``HiggsField acting pointwise through
|
||||
``HiggsVec.rep."
|
||||
deps :≈ [``HiggsVec.rep, ``gaugeTransformI]
|
||||
|
||||
informal_lemma guage_orbit where
|
||||
math :≈ "There exists a `g` in ``gaugeTransformI such that `gaugeAction g φ = φ'` if and only if
|
||||
φ(x)^† φ(x) = φ'(x)^† φ'(x)."
|
||||
deps :≈ [``gaugeAction]
|
||||
|
||||
informal_lemma gauge_orbit_surject where
|
||||
math :≈ "For every smooth map f from ``SpaceTime to ℝ such that `f` is positive semidefinite,
|
||||
there exists a Higgs field φ such that `f = φ^† φ`."
|
||||
deps :≈ [``HiggsField, ``SpaceTime]
|
||||
|
||||
end HiggsField
|
||||
|
||||
end StandardModel
|
||||
end
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue