refactor: Higgs physics

This commit is contained in:
jstoobysmith 2024-07-10 11:34:34 -04:00
parent 9eff5dc9bf
commit 9e88549bbe
7 changed files with 605 additions and 521 deletions

View file

@ -0,0 +1,226 @@
/-
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
Released under Apache 2.0 license.
Authors: Joseph Tooby-Smith
-/
import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
/-!
# The potential of the Higgs field
We define the potential of the Higgs field.
We show that the potential is a smooth function on spacetime.
-/
noncomputable section
namespace StandardModel
namespace HiggsField
open Manifold
open Matrix
open Complex
open ComplexConjugate
open SpaceTime
/-!
## The Higgs potential
-/
/-- The Higgs potential of the form `- μ² * |φ|² + 𝓵 * |φ|⁴`. -/
@[simp]
def potential (μ2 𝓵 : ) (φ : HiggsField) (x : SpaceTime) : :=
- μ2 * ‖φ‖_H ^ 2 x + 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
/-!
## Smoothness of the potential
-/
lemma potential_smooth (μSq lambda : ) (φ : HiggsField) :
Smooth 𝓘(, SpaceTime) 𝓘(, ) (fun x => φ.potential μSq lambda x) := by
simp only [potential, normSq, neg_mul]
exact (smooth_const.smul φ.normSq_smooth).neg.add
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
namespace potential
section lowerBound
/-!
## Lower bound on potential
-/
variable {𝓵 : }
variable (μ2 : )
variable (h𝓵 : 0 < 𝓵)
/-- The second term of the potential is non-negative. -/
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
rw [mul_nonneg_iff]
apply Or.inl
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
and_self]
lemma as_quad (μ2 𝓵 : ) (φ : HiggsField) (x : SpaceTime) :
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2 ) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
ring
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
lemma discrim_nonneg (φ : HiggsField) (x : SpaceTime) :
0 ≤ discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) := by
have h1 := as_quad μ2 𝓵 φ x
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x+ - μ2)
· exact ne_of_gt h𝓵
lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
(hV : potential μ2 𝓵 φ x = 0) : φ x = 0 ‖φ‖_H ^ 2 x = μ2 / 𝓵 := by
have h1 := as_quad μ2 𝓵 φ x
rw [hV] at h1
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
linear_combination h1
simp at h2
cases' h2 with h2 h2
simp_all
apply Or.inr
field_simp at h2 ⊢
ring_nf
linear_combination h2
lemma eq_zero_at_of_μSq_nonpos {μ2 : } (hμ2 : μ2 ≤ 0)
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
cases' (eq_zero_at μ2 h𝓵 φ x hV) with h1 h1
exact h1
by_cases hμSqZ : μ2 = 0
simpa [hμSqZ] using h1
refine ((?_ : ¬ 0 ≤ μ2 / 𝓵) (?_)).elim
· simp_all [div_nonneg_iff]
intro h
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμ2 hμSqZ)
· rw [← h1]
exact normSq_nonneg φ x
lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
have h1 := discrim_nonneg μ2 h𝓵 φ x
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
ring_nf at h1
rw [← neg_le_iff_add_nonneg'] at h1
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
have h2 := (div_le_iff' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
ring_nf at h2 ⊢
exact h2
lemma bounded_below_of_μSq_nonpos {μ2 : }
(hμSq : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) : 0 ≤ potential μ2 𝓵 φ x := by
refine add_nonneg ?_ (snd_term_nonneg h𝓵 φ x)
field_simp [mul_nonpos_iff]
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
end lowerBound
section MinimumOfPotential
variable {𝓵 : }
variable (μ2 : )
variable (h𝓵 : 0 < 𝓵)
/-!
## Minima of potential
-/
lemma discrim_eq_zero_of_eq_bound (φ : HiggsField) (x : SpaceTime)
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
rw [discrim, hV]
field_simp
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) := by
have h1 := as_quad μ2 𝓵 φ x
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
(discrim_eq_zero_of_eq_bound μ2 h𝓵 φ x hV)] at h1
simp_rw [h1, neg_neg]
exact ne_of_gt h𝓵
lemma eq_bound_iff (φ : HiggsField) (x : SpaceTime) :
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
Iff.intro (normSq_of_eq_bound μ2 h𝓵 φ x)
(fun h ↦ by
rw [potential, h]
field_simp
ring_nf)
lemma eq_bound_iff_of_μSq_nonpos {μ2 : }
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) :
potential μ2 𝓵 φ x = 0 ↔ φ x = 0 :=
Iff.intro (fun h ↦ eq_zero_at_of_μSq_nonpos h𝓵 hμ2 φ x h)
(fun h ↦ by simp [potential, h])
lemma eq_bound_IsMinOn (φ : HiggsField) (x : SpaceTime)
(hv : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
rw [isMinOn_univ_iff]
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
exact fun (φ', x') ↦ bounded_below μ2 h𝓵 φ' x'
lemma eq_bound_IsMinOn_of_μSq_nonpos {μ2 : }
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) (hv : potential μ2 𝓵 φ x = 0) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
rw [isMinOn_univ_iff]
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
exact fun (φ', x') ↦ bounded_below_of_μSq_nonpos h𝓵 hμ2 φ' x'
lemma bound_reached_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
∃ (φ : HiggsField) (x : SpaceTime),
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) := by
use HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0], 0
refine (eq_bound_iff μ2 h𝓵 (HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0]) 0).mpr ?_
simp only [normSq, HiggsVec.toField, ContMDiffSection.coeFn_mk, PiLp.norm_sq_eq_of_L2,
Nat.succ_eq_add_one, Nat.reduceAdd, norm_eq_abs, Fin.sum_univ_two, Fin.isValue, cons_val_zero,
abs_ofReal, _root_.sq_abs, cons_val_one, head_cons, map_zero, ne_eq, OfNat.ofNat_ne_zero,
not_false_eq_true, zero_pow, add_zero]
field_simp [mul_pow]
lemma IsMinOn_iff_of_μSq_nonneg {μ2 : } (hμ2 : 0 ≤ μ2) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔
‖φ‖_H ^ 2 x = μ2 /(2 * 𝓵) := by
apply Iff.intro <;> rw [← eq_bound_iff μ2 h𝓵 φ]
· intro h
obtain ⟨φm, xm, hφ⟩ := bound_reached_of_μSq_nonneg h𝓵 hμ2
have hm := isMinOn_univ_iff.mp h (φm, xm)
simp only at hm
rw [hφ] at hm
exact (Real.partialOrder.le_antisymm _ _ (bounded_below μ2 h𝓵 φ x) hm).symm
· exact eq_bound_IsMinOn μ2 h𝓵 φ x
lemma IsMinOn_iff_of_μSq_nonpos {μ2 : } (hμ2 : μ2 ≤ 0) :
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔ φ x = 0 := by
apply Iff.intro <;> rw [← eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 φ]
· intro h
have h0 := isMinOn_univ_iff.mp h 0
have h1 := bounded_below_of_μSq_nonpos h𝓵 hμ2 φ x
simp only at h0
rw [(eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 0 0 ).mpr (by rfl)] at h0
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
· exact eq_bound_IsMinOn_of_μSq_nonpos h𝓵 hμ2 φ x
end MinimumOfPotential
end potential
end HiggsField
end StandardModel
end