refactor: Higgs physics
This commit is contained in:
parent
9eff5dc9bf
commit
9e88549bbe
7 changed files with 605 additions and 521 deletions
226
HepLean/StandardModel/HiggsBoson/Potential.lean
Normal file
226
HepLean/StandardModel/HiggsBoson/Potential.lean
Normal file
|
@ -0,0 +1,226 @@
|
|||
/-
|
||||
Copyright (c) 2024 Joseph Tooby-Smith. All rights reserved.
|
||||
Released under Apache 2.0 license.
|
||||
Authors: Joseph Tooby-Smith
|
||||
-/
|
||||
import HepLean.StandardModel.HiggsBoson.PointwiseInnerProd
|
||||
/-!
|
||||
# The potential of the Higgs field
|
||||
|
||||
We define the potential of the Higgs field.
|
||||
|
||||
We show that the potential is a smooth function on spacetime.
|
||||
|
||||
-/
|
||||
|
||||
noncomputable section
|
||||
|
||||
namespace StandardModel
|
||||
|
||||
namespace HiggsField
|
||||
|
||||
open Manifold
|
||||
open Matrix
|
||||
open Complex
|
||||
open ComplexConjugate
|
||||
open SpaceTime
|
||||
|
||||
/-!
|
||||
|
||||
## The Higgs potential
|
||||
|
||||
-/
|
||||
|
||||
/-- The Higgs potential of the form `- μ² * |φ|² + 𝓵 * |φ|⁴`. -/
|
||||
@[simp]
|
||||
def potential (μ2 𝓵 : ℝ ) (φ : HiggsField) (x : SpaceTime) : ℝ :=
|
||||
- μ2 * ‖φ‖_H ^ 2 x + 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x
|
||||
|
||||
/-!
|
||||
|
||||
## Smoothness of the potential
|
||||
|
||||
-/
|
||||
|
||||
lemma potential_smooth (μSq lambda : ℝ) (φ : HiggsField) :
|
||||
Smooth 𝓘(ℝ, SpaceTime) 𝓘(ℝ, ℝ) (fun x => φ.potential μSq lambda x) := by
|
||||
simp only [potential, normSq, neg_mul]
|
||||
exact (smooth_const.smul φ.normSq_smooth).neg.add
|
||||
((smooth_const.smul φ.normSq_smooth).smul φ.normSq_smooth)
|
||||
|
||||
namespace potential
|
||||
section lowerBound
|
||||
/-!
|
||||
|
||||
## Lower bound on potential
|
||||
|
||||
-/
|
||||
|
||||
variable {𝓵 : ℝ}
|
||||
variable (μ2 : ℝ)
|
||||
variable (h𝓵 : 0 < 𝓵)
|
||||
|
||||
/-- The second term of the potential is non-negative. -/
|
||||
lemma snd_term_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ 𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x := by
|
||||
rw [mul_nonneg_iff]
|
||||
apply Or.inl
|
||||
simp_all only [normSq, gt_iff_lt, mul_nonneg_iff_of_pos_left, ge_iff_le, norm_nonneg, pow_nonneg,
|
||||
and_self]
|
||||
|
||||
lemma as_quad (μ2 𝓵 : ℝ) (φ : HiggsField) (x : SpaceTime) :
|
||||
𝓵 * ‖φ‖_H ^ 2 x * ‖φ‖_H ^ 2 x + (- μ2 ) * ‖φ‖_H ^ 2 x + (- potential μ2 𝓵 φ x) = 0 := by
|
||||
simp only [normSq, neg_mul, potential, neg_add_rev, neg_neg]
|
||||
ring
|
||||
|
||||
/-- The discriminant of the quadratic formed by the potential is non-negative. -/
|
||||
lemma discrim_nonneg (φ : HiggsField) (x : SpaceTime) :
|
||||
0 ≤ discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [quadratic_eq_zero_iff_discrim_eq_sq] at h1
|
||||
· simp only [h1, ne_eq, div_eq_zero_iff, OfNat.ofNat_ne_zero, or_false]
|
||||
exact sq_nonneg (2 * 𝓵 * ‖φ‖_H ^ 2 x+ - μ2)
|
||||
· exact ne_of_gt h𝓵
|
||||
|
||||
lemma eq_zero_at (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = 0) : φ x = 0 ∨ ‖φ‖_H ^ 2 x = μ2 / 𝓵 := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [hV] at h1
|
||||
have h2 : ‖φ‖_H ^ 2 x * (𝓵 * ‖φ‖_H ^ 2 x + - μ2) = 0 := by
|
||||
linear_combination h1
|
||||
simp at h2
|
||||
cases' h2 with h2 h2
|
||||
simp_all
|
||||
apply Or.inr
|
||||
field_simp at h2 ⊢
|
||||
ring_nf
|
||||
linear_combination h2
|
||||
|
||||
lemma eq_zero_at_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0)
|
||||
(φ : HiggsField) (x : SpaceTime) (hV : potential μ2 𝓵 φ x = 0) : φ x = 0 := by
|
||||
cases' (eq_zero_at μ2 h𝓵 φ x hV) with h1 h1
|
||||
exact h1
|
||||
by_cases hμSqZ : μ2 = 0
|
||||
simpa [hμSqZ] using h1
|
||||
refine ((?_ : ¬ 0 ≤ μ2 / 𝓵) (?_)).elim
|
||||
· simp_all [div_nonneg_iff]
|
||||
intro h
|
||||
exact lt_imp_lt_of_le_imp_le (fun _ => h) (lt_of_le_of_ne hμ2 hμSqZ)
|
||||
· rw [← h1]
|
||||
exact normSq_nonneg φ x
|
||||
|
||||
lemma bounded_below (φ : HiggsField) (x : SpaceTime) :
|
||||
- μ2 ^ 2 / (4 * 𝓵) ≤ potential μ2 𝓵 φ x := by
|
||||
have h1 := discrim_nonneg μ2 h𝓵 φ x
|
||||
simp only [discrim, even_two, Even.neg_pow, normSq, neg_mul, neg_add_rev, neg_neg] at h1
|
||||
ring_nf at h1
|
||||
rw [← neg_le_iff_add_nonneg'] at h1
|
||||
rw [show 𝓵 * potential μ2 𝓵 φ x * 4 = (4 * 𝓵) * potential μ2 𝓵 φ x by ring] at h1
|
||||
have h2 := (div_le_iff' (by simp [h𝓵] : 0 < 4 * 𝓵)).mpr h1
|
||||
ring_nf at h2 ⊢
|
||||
exact h2
|
||||
|
||||
lemma bounded_below_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμSq : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) : 0 ≤ potential μ2 𝓵 φ x := by
|
||||
refine add_nonneg ?_ (snd_term_nonneg h𝓵 φ x)
|
||||
field_simp [mul_nonpos_iff]
|
||||
simp_all [ge_iff_le, norm_nonneg, pow_nonneg, and_self, or_true]
|
||||
|
||||
end lowerBound
|
||||
|
||||
section MinimumOfPotential
|
||||
variable {𝓵 : ℝ}
|
||||
variable (μ2 : ℝ)
|
||||
variable (h𝓵 : 0 < 𝓵)
|
||||
|
||||
/-!
|
||||
|
||||
## Minima of potential
|
||||
|
||||
-/
|
||||
|
||||
lemma discrim_eq_zero_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
discrim 𝓵 (- μ2) (- potential μ2 𝓵 φ x) = 0 := by
|
||||
rw [discrim, hV]
|
||||
field_simp
|
||||
|
||||
lemma normSq_of_eq_bound (φ : HiggsField) (x : SpaceTime)
|
||||
(hV : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) := by
|
||||
have h1 := as_quad μ2 𝓵 φ x
|
||||
rw [quadratic_eq_zero_iff_of_discrim_eq_zero _
|
||||
(discrim_eq_zero_of_eq_bound μ2 h𝓵 φ x hV)] at h1
|
||||
simp_rw [h1, neg_neg]
|
||||
exact ne_of_gt h𝓵
|
||||
|
||||
lemma eq_bound_iff (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) ↔ ‖φ‖_H ^ 2 x = μ2 / (2 * 𝓵) :=
|
||||
Iff.intro (normSq_of_eq_bound μ2 h𝓵 φ x)
|
||||
(fun h ↦ by
|
||||
rw [potential, h]
|
||||
field_simp
|
||||
ring_nf)
|
||||
|
||||
lemma eq_bound_iff_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) :
|
||||
potential μ2 𝓵 φ x = 0 ↔ φ x = 0 :=
|
||||
Iff.intro (fun h ↦ eq_zero_at_of_μSq_nonpos h𝓵 hμ2 φ x h)
|
||||
(fun h ↦ by simp [potential, h])
|
||||
|
||||
lemma eq_bound_IsMinOn (φ : HiggsField) (x : SpaceTime)
|
||||
(hv : potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵)) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
|
||||
rw [isMinOn_univ_iff]
|
||||
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
|
||||
exact fun (φ', x') ↦ bounded_below μ2 h𝓵 φ' x'
|
||||
|
||||
lemma eq_bound_IsMinOn_of_μSq_nonpos {μ2 : ℝ}
|
||||
(hμ2 : μ2 ≤ 0) (φ : HiggsField) (x : SpaceTime) (hv : potential μ2 𝓵 φ x = 0) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) := by
|
||||
rw [isMinOn_univ_iff]
|
||||
simp only [normSq, neg_mul, le_neg_add_iff_add_le, ge_iff_le, hv]
|
||||
exact fun (φ', x') ↦ bounded_below_of_μSq_nonpos h𝓵 hμ2 φ' x'
|
||||
|
||||
lemma bound_reached_of_μSq_nonneg {μ2 : ℝ} (hμ2 : 0 ≤ μ2) :
|
||||
∃ (φ : HiggsField) (x : SpaceTime),
|
||||
potential μ2 𝓵 φ x = - μ2 ^ 2 / (4 * 𝓵) := by
|
||||
use HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0], 0
|
||||
refine (eq_bound_iff μ2 h𝓵 (HiggsVec.toField ![√(μ2/(2 * 𝓵)), 0]) 0).mpr ?_
|
||||
simp only [normSq, HiggsVec.toField, ContMDiffSection.coeFn_mk, PiLp.norm_sq_eq_of_L2,
|
||||
Nat.succ_eq_add_one, Nat.reduceAdd, norm_eq_abs, Fin.sum_univ_two, Fin.isValue, cons_val_zero,
|
||||
abs_ofReal, _root_.sq_abs, cons_val_one, head_cons, map_zero, ne_eq, OfNat.ofNat_ne_zero,
|
||||
not_false_eq_true, zero_pow, add_zero]
|
||||
field_simp [mul_pow]
|
||||
|
||||
lemma IsMinOn_iff_of_μSq_nonneg {μ2 : ℝ} (hμ2 : 0 ≤ μ2) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔
|
||||
‖φ‖_H ^ 2 x = μ2 /(2 * 𝓵) := by
|
||||
apply Iff.intro <;> rw [← eq_bound_iff μ2 h𝓵 φ]
|
||||
· intro h
|
||||
obtain ⟨φm, xm, hφ⟩ := bound_reached_of_μSq_nonneg h𝓵 hμ2
|
||||
have hm := isMinOn_univ_iff.mp h (φm, xm)
|
||||
simp only at hm
|
||||
rw [hφ] at hm
|
||||
exact (Real.partialOrder.le_antisymm _ _ (bounded_below μ2 h𝓵 φ x) hm).symm
|
||||
· exact eq_bound_IsMinOn μ2 h𝓵 φ x
|
||||
|
||||
lemma IsMinOn_iff_of_μSq_nonpos {μ2 : ℝ} (hμ2 : μ2 ≤ 0) :
|
||||
IsMinOn (fun (φ, x) => potential μ2 𝓵 φ x) Set.univ (φ, x) ↔ φ x = 0 := by
|
||||
apply Iff.intro <;> rw [← eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 φ]
|
||||
· intro h
|
||||
have h0 := isMinOn_univ_iff.mp h 0
|
||||
have h1 := bounded_below_of_μSq_nonpos h𝓵 hμ2 φ x
|
||||
simp only at h0
|
||||
rw [(eq_bound_iff_of_μSq_nonpos h𝓵 hμ2 0 0 ).mpr (by rfl)] at h0
|
||||
exact (Real.partialOrder.le_antisymm _ _ h1 h0).symm
|
||||
· exact eq_bound_IsMinOn_of_μSq_nonpos h𝓵 hμ2 φ x
|
||||
|
||||
end MinimumOfPotential
|
||||
|
||||
end potential
|
||||
|
||||
end HiggsField
|
||||
|
||||
end StandardModel
|
||||
end
|
Loading…
Add table
Add a link
Reference in a new issue