refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-24 16:47:32 +00:00
parent 7d983f5b4b
commit 9ec5746451
5 changed files with 4 additions and 15 deletions

View file

@ -52,7 +52,7 @@ lemma toSelfAdjointMatrix_apply_coe (x : LorentzVector 3) : (toSelfAdjointMatrix
- x (Sum.inr 1) • PauliMatrix.σ2
- x (Sum.inr 2) • PauliMatrix.σ3 := by
rw [toSelfAdjointMatrix_apply]
simp only [Fin.isValue, AddSubgroupClass.coe_sub, selfAdjoint.val_smul]
rfl
lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) :
toSelfAdjointMatrix (LorentzVector.stdBasis i) = PauliMatrix.σSAL i := by
@ -68,21 +68,21 @@ lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) :
simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul,
Pi.single_eq_same, one_smul, zero_sub, Sum.inr.injEq, one_ne_zero, sub_zero, Fin.reduceEq,
PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
rfl
| Sum.inr 1 =>
simp only [LorentzVector.stdBasis, Fin.isValue]
erw [Pi.basisFun_apply]
simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul,
Sum.inr.injEq, zero_ne_one, sub_self, Pi.single_eq_same, one_smul, zero_sub, Fin.reduceEq,
sub_zero, PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
rfl
| Sum.inr 2 =>
simp only [LorentzVector.stdBasis, Fin.isValue]
erw [Pi.basisFun_apply]
simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul,
Sum.inr.injEq, Fin.reduceEq, sub_self, Pi.single_eq_same, one_smul, zero_sub,
PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
rfl
@[simp]
lemma toSelfAdjointMatrix_symm_basis (i : Fin 1 ⊕ Fin 3) :

View file

@ -44,7 +44,6 @@ def complexContrBasis : Basis (Fin 1 ⊕ Fin 3) complexContr := Basis.ofEqui
lemma complexContrBasis_toFin13 (i :Fin 1 ⊕ Fin 3) :
(complexContrBasis i).toFin13 = Pi.single i 1 := by
simp only [complexContrBasis, Basis.coe_ofEquivFun]
rw [Lorentz.ContrModule.toFin13]
rfl
@[simp]
@ -72,7 +71,6 @@ def complexCoBasis : Basis (Fin 1 ⊕ Fin 3) complexCo := Basis.ofEquivFun
@[simp]
lemma complexCoBasis_toFin13 (i :Fin 1 ⊕ Fin 3) : (complexCoBasis i).toFin13 = Pi.single i 1 := by
simp only [complexCoBasis, Basis.coe_ofEquivFun]
rw [Lorentz.CoModule.toFin13]
rfl
@[simp]

View file

@ -41,10 +41,6 @@ lemma asTensor_expand_complexContrBasis : asTensor =
+ complexContrBasis (Sum.inr 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 0))
+ complexContrBasis (Sum.inr 1) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 1))
+ complexContrBasis (Sum.inr 2) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 2)) := by
simp only [Action.instMonoidalCategory_tensorObj_V, asTensor,
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
Action.FunctorCategoryEquivalence.functor_obj_obj, Fintype.sum_sum_type, Finset.univ_unique,
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three]
rfl
/-- The expansion of the pauli matrix `σ₀` in terms of a basis of tensor product vectors. -/

View file

@ -61,7 +61,6 @@ lemma leftBasis_ρ_apply (M : SL(2,)) (i j : Fin 2) :
@[simp]
lemma leftBasis_toFin2 (i : Fin 2) : (leftBasis i).toFin2 = Pi.single i 1 := by
simp only [leftBasis, Basis.coe_ofEquivFun]
rw [LeftHandedModule.toFin2]
rfl
/-- The vector space ^2 carrying the representation of SL(2,C) given by
@ -94,7 +93,6 @@ def altLeftBasis : Basis (Fin 2) altLeftHanded := Basis.ofEquivFun
@[simp]
lemma altLeftBasis_toFin2 (i : Fin 2) : (altLeftBasis i).toFin2 = Pi.single i 1 := by
simp only [altLeftBasis, Basis.coe_ofEquivFun]
rw [AltLeftHandedModule.toFin2]
rfl
@[simp]
@ -132,7 +130,6 @@ def rightBasis : Basis (Fin 2) rightHanded := Basis.ofEquivFun
@[simp]
lemma rightBasis_toFin2 (i : Fin 2) : (rightBasis i).toFin2 = Pi.single i 1 := by
simp only [rightBasis, Basis.coe_ofEquivFun]
rw [RightHandedModule.toFin2]
rfl
@[simp]
@ -174,7 +171,6 @@ def altRightBasis : Basis (Fin 2) altRightHanded := Basis.ofEquivFun
@[simp]
lemma altRightBasis_toFin2 (i : Fin 2) : (altRightBasis i).toFin2 = Pi.single i 1 := by
simp only [altRightBasis, Basis.coe_ofEquivFun]
rw [AltRightHandedModule.toFin2]
rfl
@[simp]

View file

@ -7,7 +7,6 @@ import HepLean.SpaceTime.WeylFermion.Basic
import HepLean.SpaceTime.WeylFermion.Contraction
import Mathlib.LinearAlgebra.TensorProduct.Matrix
import HepLean.SpaceTime.WeylFermion.Two
import LLMLean
/-!
# Units of Weyl fermions