refactor: Lint
This commit is contained in:
parent
7d983f5b4b
commit
9ec5746451
5 changed files with 4 additions and 15 deletions
|
@ -52,7 +52,7 @@ lemma toSelfAdjointMatrix_apply_coe (x : LorentzVector 3) : (toSelfAdjointMatrix
|
|||
- x (Sum.inr 1) • PauliMatrix.σ2
|
||||
- x (Sum.inr 2) • PauliMatrix.σ3 := by
|
||||
rw [toSelfAdjointMatrix_apply]
|
||||
simp only [Fin.isValue, AddSubgroupClass.coe_sub, selfAdjoint.val_smul]
|
||||
rfl
|
||||
|
||||
lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) :
|
||||
toSelfAdjointMatrix (LorentzVector.stdBasis i) = PauliMatrix.σSAL i := by
|
||||
|
@ -68,21 +68,21 @@ lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) :
|
|||
simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul,
|
||||
Pi.single_eq_same, one_smul, zero_sub, Sum.inr.injEq, one_ne_zero, sub_zero, Fin.reduceEq,
|
||||
PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
|
||||
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
|
||||
rfl
|
||||
| Sum.inr 1 =>
|
||||
simp only [LorentzVector.stdBasis, Fin.isValue]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul,
|
||||
Sum.inr.injEq, zero_ne_one, sub_self, Pi.single_eq_same, one_smul, zero_sub, Fin.reduceEq,
|
||||
sub_zero, PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
|
||||
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
|
||||
rfl
|
||||
| Sum.inr 2 =>
|
||||
simp only [LorentzVector.stdBasis, Fin.isValue]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp only [Fin.isValue, ne_eq, reduceCtorEq, not_false_eq_true, Pi.single_eq_of_ne, zero_smul,
|
||||
Sum.inr.injEq, Fin.reduceEq, sub_self, Pi.single_eq_same, one_smul, zero_sub,
|
||||
PauliMatrix.σSAL, Basis.coe_mk, PauliMatrix.σSAL']
|
||||
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
lemma toSelfAdjointMatrix_symm_basis (i : Fin 1 ⊕ Fin 3) :
|
||||
|
|
|
@ -44,7 +44,6 @@ def complexContrBasis : Basis (Fin 1 ⊕ Fin 3) ℂ complexContr := Basis.ofEqui
|
|||
lemma complexContrBasis_toFin13ℂ (i :Fin 1 ⊕ Fin 3) :
|
||||
(complexContrBasis i).toFin13ℂ = Pi.single i 1 := by
|
||||
simp only [complexContrBasis, Basis.coe_ofEquivFun]
|
||||
rw [Lorentz.ContrℂModule.toFin13ℂ]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
|
@ -72,7 +71,6 @@ def complexCoBasis : Basis (Fin 1 ⊕ Fin 3) ℂ complexCo := Basis.ofEquivFun
|
|||
@[simp]
|
||||
lemma complexCoBasis_toFin13ℂ (i :Fin 1 ⊕ Fin 3) : (complexCoBasis i).toFin13ℂ = Pi.single i 1 := by
|
||||
simp only [complexCoBasis, Basis.coe_ofEquivFun]
|
||||
rw [Lorentz.CoℂModule.toFin13ℂ]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
|
|
|
@ -41,10 +41,6 @@ lemma asTensor_expand_complexContrBasis : asTensor =
|
|||
+ complexContrBasis (Sum.inr 0) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 0))
|
||||
+ complexContrBasis (Sum.inr 1) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 1))
|
||||
+ complexContrBasis (Sum.inr 2) ⊗ₜ leftRightToMatrix.symm (σSA (Sum.inr 2)) := by
|
||||
simp only [Action.instMonoidalCategory_tensorObj_V, asTensor,
|
||||
CategoryTheory.Equivalence.symm_inverse, Action.functorCategoryEquivalence_functor,
|
||||
Action.FunctorCategoryEquivalence.functor_obj_obj, Fintype.sum_sum_type, Finset.univ_unique,
|
||||
Fin.default_eq_zero, Fin.isValue, Finset.sum_singleton, Fin.sum_univ_three]
|
||||
rfl
|
||||
|
||||
/-- The expansion of the pauli matrix `σ₀` in terms of a basis of tensor product vectors. -/
|
||||
|
|
|
@ -61,7 +61,6 @@ lemma leftBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 2) :
|
|||
@[simp]
|
||||
lemma leftBasis_toFin2ℂ (i : Fin 2) : (leftBasis i).toFin2ℂ = Pi.single i 1 := by
|
||||
simp only [leftBasis, Basis.coe_ofEquivFun]
|
||||
rw [LeftHandedModule.toFin2ℂ]
|
||||
rfl
|
||||
|
||||
/-- The vector space ℂ^2 carrying the representation of SL(2,C) given by
|
||||
|
@ -94,7 +93,6 @@ def altLeftBasis : Basis (Fin 2) ℂ altLeftHanded := Basis.ofEquivFun
|
|||
@[simp]
|
||||
lemma altLeftBasis_toFin2ℂ (i : Fin 2) : (altLeftBasis i).toFin2ℂ = Pi.single i 1 := by
|
||||
simp only [altLeftBasis, Basis.coe_ofEquivFun]
|
||||
rw [AltLeftHandedModule.toFin2ℂ]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
|
@ -132,7 +130,6 @@ def rightBasis : Basis (Fin 2) ℂ rightHanded := Basis.ofEquivFun
|
|||
@[simp]
|
||||
lemma rightBasis_toFin2ℂ (i : Fin 2) : (rightBasis i).toFin2ℂ = Pi.single i 1 := by
|
||||
simp only [rightBasis, Basis.coe_ofEquivFun]
|
||||
rw [RightHandedModule.toFin2ℂ]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
|
@ -174,7 +171,6 @@ def altRightBasis : Basis (Fin 2) ℂ altRightHanded := Basis.ofEquivFun
|
|||
@[simp]
|
||||
lemma altRightBasis_toFin2ℂ (i : Fin 2) : (altRightBasis i).toFin2ℂ = Pi.single i 1 := by
|
||||
simp only [altRightBasis, Basis.coe_ofEquivFun]
|
||||
rw [AltRightHandedModule.toFin2ℂ]
|
||||
rfl
|
||||
|
||||
@[simp]
|
||||
|
|
|
@ -7,7 +7,6 @@ import HepLean.SpaceTime.WeylFermion.Basic
|
|||
import HepLean.SpaceTime.WeylFermion.Contraction
|
||||
import Mathlib.LinearAlgebra.TensorProduct.Matrix
|
||||
import HepLean.SpaceTime.WeylFermion.Two
|
||||
import LLMLean
|
||||
/-!
|
||||
|
||||
# Units of Weyl fermions
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue