refactor: Lint
This commit is contained in:
parent
52e591fa7a
commit
9f27a3a9fd
46 changed files with 176 additions and 168 deletions
|
@ -109,8 +109,8 @@ lemma quad_self_proj (T : MSSMACC.Sols) :
|
|||
|
||||
lemma quad_proj (T : MSSMACC.Sols) :
|
||||
quadBiLin (proj T.1.1).val (proj T.1.1).val = 2 * dot Y₃.val B₃.val *
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * quadBiLin Y₃.val T.val +
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * quadBiLin B₃.val T.val) := by
|
||||
((dot B₃.val T.val - dot Y₃.val T.val) * quadBiLin Y₃.val T.val +
|
||||
(dot Y₃.val T.val - 2 * dot B₃.val T.val) * quadBiLin B₃.val T.val) := by
|
||||
nth_rewrite 1 [proj_val]
|
||||
repeat rw [quadBiLin.map_add₁]
|
||||
repeat rw [quadBiLin.map_smul₁]
|
||||
|
@ -151,7 +151,7 @@ lemma cube_proj_proj_B₃ (T : MSSMACC.LinSols) :
|
|||
rw [cubeTriLin.map_add₂, cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||||
rw [cubeTriLin.swap₁, cubeTriLin.swap₂, doublePoint_Y₃_B₃]
|
||||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂, cubeTriLin.swap₁, cubeTriLin.swap₂,
|
||||
cubeTriLin.swap₁, doublePoint_B₃_B₃]
|
||||
cubeTriLin.swap₁, doublePoint_B₃_B₃]
|
||||
rw [cubeTriLin.map_smul₁, cubeTriLin.map_smul₂]
|
||||
ring
|
||||
|
||||
|
|
|
@ -48,7 +48,7 @@ lemma planeY₃B₃_eq (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (h : a = a'
|
|||
|
||||
lemma planeY₃B₃_val_eq' (R : MSSMACC.AnomalyFreePerp) (a b c : ℚ) (hR' : R.val ≠ 0)
|
||||
(h : (planeY₃B₃ R a b c).val = (planeY₃B₃ R a' b' c').val) :
|
||||
a = a' ∧ b = b' ∧ c = c' := by
|
||||
a = a' ∧ b = b' ∧ c = c' := by
|
||||
rw [planeY₃B₃_val, planeY₃B₃_val] at h
|
||||
have h1 := congrArg (fun S => dot Y₃.val S) h
|
||||
have h2 := congrArg (fun S => dot B₃.val S) h
|
||||
|
|
|
@ -43,7 +43,7 @@ instance (R : MSSMACC.AnomalyFreePerp) : Decidable (LineEqProp R) := by
|
|||
apply And.decidable
|
||||
|
||||
/-- A condition on `Sols` which we will show in `linEqPropSol_iff_proj_linEqProp` that is equivalent
|
||||
to the condition that the `proj` of the solution satisfies `lineEqProp`. -/
|
||||
to the condition that the `proj` of the solution satisfies `lineEqProp`. -/
|
||||
def LineEqPropSol (R : MSSMACC.Sols) : Prop :=
|
||||
cubeTriLin R.val R.val Y₃.val * quadBiLin B₃.val R.val -
|
||||
cubeTriLin R.val R.val B₃.val * quadBiLin Y₃.val R.val = 0
|
||||
|
@ -338,8 +338,7 @@ lemma inQuadToSol_proj (T : InQuadSol) : inQuadToSol (inQuadProj T) = T.val := b
|
|||
ring_nf
|
||||
simp only [zero_smul, add_zero, Fin.isValue, Fin.reduceFinMk, zero_add]
|
||||
have h1 : (cubeTriLin T.val.val T.val.val Y₃.val ^ 2 * dot Y₃.val B₃.val ^ 3 * 3 +
|
||||
dot Y₃.val B₃.val ^ 3 * cubeTriLin T.val.val T.val.val B₃.val ^ 2
|
||||
* 3) = cubicCoeff T.val := by
|
||||
dot Y₃.val B₃.val ^ 3 * cubeTriLin T.val.val T.val.val B₃.val ^ 2* 3) = cubicCoeff T.val := by
|
||||
rw [cubicCoeff]
|
||||
ring
|
||||
rw [h1]
|
||||
|
@ -360,7 +359,7 @@ def inQuadCubeToSol : InQuadCube × ℚ × ℚ × ℚ → MSSMACC.Sols := fun (R
|
|||
simp)
|
||||
|
||||
lemma inQuadCubeToSol_smul (R : InQuadCube) (c₁ c₂ c₃ d : ℚ) :
|
||||
inQuadCubeToSol (R, (d * c₁), (d * c₂), (d * c₃)) = d • inQuadCubeToSol (R, c₁, c₂, c₃):= by
|
||||
inQuadCubeToSol (R, (d * c₁), (d * c₂), (d * c₃)) = d • inQuadCubeToSol (R, c₁, c₂, c₃) := by
|
||||
apply ACCSystem.Sols.ext
|
||||
change (planeY₃B₃ _ _ _ _).val = _
|
||||
rw [planeY₃B₃_smul]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue