refactor: Lint
This commit is contained in:
parent
52e591fa7a
commit
9f27a3a9fd
46 changed files with 176 additions and 168 deletions
|
@ -260,7 +260,7 @@ def quadBiLin : BiLinearSymm (SMνCharges n).Charges := BiLinearSymm.mk₂
|
|||
|
||||
lemma quadBiLin_decomp (S T : (SMνCharges n).Charges) :
|
||||
quadBiLin S T = ∑ i, Q S i * Q T i - 2 * ∑ i, U S i * U T i +
|
||||
∑ i, D S i * D T i - ∑ i, L S i * L T i + ∑ i, E S i * E T i := by
|
||||
∑ i, D S i * D T i - ∑ i, L S i * L T i + ∑ i, E S i * E T i := by
|
||||
erw [← quadBiLin.toFun_eq_coe]
|
||||
rw [quadBiLin]
|
||||
simp only [quadBiLin, BiLinearSymm.mk₂, AddHom.toFun_eq_coe, AddHom.coe_mk, LinearMap.coe_mk]
|
||||
|
|
|
@ -213,7 +213,7 @@ lemma familyUniversal_cubeTriLin (S : (SMνCharges 1).Charges) (T R : (SMνCharg
|
|||
lemma familyUniversal_cubeTriLin' (S T : (SMνCharges 1).Charges) (R : (SMνCharges n).Charges) :
|
||||
cubeTriLin (familyUniversal n S) (familyUniversal n T) R =
|
||||
6 * S (0 : Fin 6) * T (0 : Fin 6) * ∑ i, Q R i +
|
||||
3 * S (1 : Fin 6) * T (1 : Fin 6) * ∑ i, U R i
|
||||
3 * S (1 : Fin 6) * T (1 : Fin 6) * ∑ i, U R i
|
||||
+ 3 * S (2 : Fin 6) * T (2 : Fin 6) * ∑ i, D R i +
|
||||
2 * S (3 : Fin 6) * T (3 : Fin 6) * ∑ i, L R i +
|
||||
S (4 : Fin 6) * T (4 : Fin 6) * ∑ i, E R i + S (5 : Fin 6) * T (5 : Fin 6) * ∑ i, N R i := by
|
||||
|
|
|
@ -86,7 +86,7 @@ lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ℚ) :
|
|||
def addQuad (S : (PlusU1 n).QuadSols) (a b : ℚ) : (PlusU1 n).QuadSols :=
|
||||
linearToQuad (a • S.1 + b • (BL n).1.1) (add_quad S a b)
|
||||
|
||||
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ): addQuad S a 0 = a • S := by
|
||||
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ) : addQuad S a 0 = a • S := by
|
||||
simp [addQuad, linearToQuad]
|
||||
rfl
|
||||
|
||||
|
|
|
@ -24,7 +24,7 @@ open BigOperators
|
|||
/-- A proposition which is true if for a given `n`, a plane of charges of dimension `n` exists
|
||||
in which each point is a solution. -/
|
||||
def ExistsPlane (n : ℕ) : Prop := ∃ (B : Fin n → (PlusU1 3).Charges),
|
||||
LinearIndependent ℚ B ∧ ∀ (f : Fin n → ℚ), (PlusU1 3).IsSolution (∑ i, f i • B i)
|
||||
LinearIndependent ℚ B ∧ ∀ (f : Fin n → ℚ), (PlusU1 3).IsSolution (∑ i, f i • B i)
|
||||
|
||||
lemma exists_plane_exists_basis {n : ℕ} (hE : ExistsPlane n) :
|
||||
∃ (B : Fin 11 ⊕ Fin n → (PlusU1 3).Charges), LinearIndependent ℚ B := by
|
||||
|
@ -38,7 +38,7 @@ lemma exists_plane_exists_basis {n : ℕ} (hE : ExistsPlane n) :
|
|||
rw [@add_eq_zero_iff_eq_neg] at hg
|
||||
rw [← @Finset.sum_neg_distrib] at hg
|
||||
have h1 : ∑ x : Fin n, -(g (Sum.inr x) • Y (Sum.inr x)) =
|
||||
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x):= by
|
||||
∑ x : Fin n, (-g (Sum.inr x)) • Y (Sum.inr x) := by
|
||||
apply Finset.sum_congr
|
||||
simp only
|
||||
intro i _
|
||||
|
|
|
@ -84,7 +84,7 @@ lemma add_quad (S : (PlusU1 n).QuadSols) (a b : ℚ) :
|
|||
def addQuad (S : (PlusU1 n).QuadSols) (a b : ℚ) : (PlusU1 n).QuadSols :=
|
||||
linearToQuad (a • S.1 + b • (Y n).1.1) (add_quad S a b)
|
||||
|
||||
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ): addQuad S a 0 = a • S := by
|
||||
lemma addQuad_zero (S : (PlusU1 n).QuadSols) (a : ℚ) : addQuad S a 0 = a • S := by
|
||||
simp [addQuad, linearToQuad]
|
||||
rfl
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue