refactor: Lint
This commit is contained in:
parent
52e591fa7a
commit
9f27a3a9fd
46 changed files with 176 additions and 168 deletions
|
@ -293,47 +293,47 @@ def VAbs (i j : Fin 3) : Quotient CKMMatrixSetoid → ℝ :=
|
|||
Quotient.lift (fun V => VAbs' V i j) (VAbs'_equiv i j)
|
||||
|
||||
/-- The absolute value of the `ud`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VudAbs := VAbs 0 0
|
||||
|
||||
/-- The absolute value of the `us`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VusAbs := VAbs 0 1
|
||||
|
||||
/-- The absolute value of the `ub`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VubAbs := VAbs 0 2
|
||||
|
||||
/-- The absolute value of the `cd`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VcdAbs := VAbs 1 0
|
||||
|
||||
/-- The absolute value of the `cs`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VcsAbs := VAbs 1 1
|
||||
|
||||
/-- The absolute value of the `cb`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VcbAbs := VAbs 1 2
|
||||
|
||||
/-- The absolute value of the `td`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VtdAbs := VAbs 2 0
|
||||
|
||||
/-- The absolute value of the `ts`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VtsAbs := VAbs 2 1
|
||||
|
||||
/-- The absolute value of the `tb`th element of a representative of an equivalence class of
|
||||
CKM matrices. -/
|
||||
CKM matrices. -/
|
||||
@[simp]
|
||||
abbrev VtbAbs := VAbs 2 2
|
||||
|
||||
|
@ -372,7 +372,7 @@ def Rcdcb (V : CKMMatrix) : ℂ := [V]cd / [V]cb
|
|||
/-- The ratio of the `cd` and `cb` elements of a CKM matrix. -/
|
||||
scoped[CKMMatrix] notation (name := cd_cb_ratio) "[" V "]cd|cb" => Rcdcb V
|
||||
|
||||
lemma Rcdcb_mul_cb {V : CKMMatrix} (h : [V]cb ≠ 0): [V]cd = Rcdcb V * [V]cb := by
|
||||
lemma Rcdcb_mul_cb {V : CKMMatrix} (h : [V]cb ≠ 0) : [V]cd = Rcdcb V * [V]cb := by
|
||||
rw [Rcdcb]
|
||||
exact (div_mul_cancel₀ (V.1 1 0) h).symm
|
||||
|
||||
|
@ -382,7 +382,7 @@ def Rcscb (V : CKMMatrix) : ℂ := [V]cs / [V]cb
|
|||
/-- The ratio of the `cs` and `cb` elements of a CKM matrix. -/
|
||||
scoped[CKMMatrix] notation (name := cs_cb_ratio) "[" V "]cs|cb" => Rcscb V
|
||||
|
||||
lemma Rcscb_mul_cb {V : CKMMatrix} (h : [V]cb ≠ 0): [V]cs = Rcscb V * [V]cb := by
|
||||
lemma Rcscb_mul_cb {V : CKMMatrix} (h : [V]cb ≠ 0) : [V]cs = Rcscb V * [V]cb := by
|
||||
rw [Rcscb]
|
||||
exact (div_mul_cancel₀ [V]cs h).symm
|
||||
|
||||
|
|
|
@ -49,8 +49,8 @@ def jarlskogℂ : Quotient CKMMatrixSetoid → ℂ :=
|
|||
Quotient.lift jarlskogℂCKM jarlskogℂCKM_equiv
|
||||
|
||||
/-- An invariant for CKM mtrices corresponding to the square of the absolute values
|
||||
of the `us`, `ub` and `cb` elements multipled together divied by `(VudAbs V ^ 2 + VusAbs V ^2)` .
|
||||
-/
|
||||
of the `us`, `ub` and `cb` elements multipled together divied by `(VudAbs V ^ 2 + VusAbs V ^2)` .
|
||||
-/
|
||||
def VusVubVcdSq (V : Quotient CKMMatrixSetoid) : ℝ :=
|
||||
VusAbs V ^ 2 * VubAbs V ^ 2 * VcbAbs V ^2 / (VudAbs V ^ 2 + VusAbs V ^2)
|
||||
|
||||
|
|
|
@ -165,7 +165,7 @@ def FstRowThdColRealCond (U : CKMMatrix) : Prop := [U]ud = VudAbs ⟦U⟧ ∧ [U
|
|||
there is no phase difference between the `t`th-row and
|
||||
the cross product of the conjugates of the `u`th and `c`th rows, and the `cd`th and `cs`th
|
||||
elements are real and related in a set way.
|
||||
-/
|
||||
-/
|
||||
def ubOnePhaseCond (U : CKMMatrix) : Prop :=
|
||||
[U]ud = 0 ∧ [U]us = 0 ∧ [U]cb = 0 ∧ [U]ub = 1 ∧ [U]t = conj [U]u ×₃ conj [U]c
|
||||
∧ [U]cd = - VcdAbs ⟦U⟧ ∧ [U]cs = √(1 - VcdAbs ⟦U⟧ ^ 2)
|
||||
|
|
|
@ -100,8 +100,8 @@ lemma standParamAsMatrix_unitary (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) :
|
|||
parameterization of CKM matrices. -/
|
||||
def standParam (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) : CKMMatrix :=
|
||||
⟨standParamAsMatrix θ₁₂ θ₁₃ θ₂₃ δ₁₃, by
|
||||
rw [mem_unitaryGroup_iff']
|
||||
exact standParamAsMatrix_unitary θ₁₂ θ₁₃ θ₂₃ δ₁₃⟩
|
||||
rw [mem_unitaryGroup_iff']
|
||||
exact standParamAsMatrix_unitary θ₁₂ θ₁₃ θ₂₃ δ₁₃⟩
|
||||
|
||||
namespace standParam
|
||||
lemma cross_product_t (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) :
|
||||
|
@ -158,7 +158,7 @@ lemma VusVubVcdSq_eq (θ₁₂ θ₁₃ θ₂₃ δ₁₃ : ℝ) (h1 : 0 ≤ Rea
|
|||
VusVubVcdSq ⟦standParam θ₁₂ θ₁₃ θ₂₃ δ₁₃⟧ =
|
||||
Real.sin θ₁₂ ^ 2 * Real.cos θ₁₃ ^ 2 * Real.sin θ₁₃ ^ 2 * Real.sin θ₂₃ ^ 2 := by
|
||||
simp only [VusVubVcdSq, VusAbs, VAbs, VAbs', Fin.isValue, standParam, standParamAsMatrix,
|
||||
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
|
||||
neg_mul, Quotient.lift_mk, cons_val', cons_val_one, head_cons,
|
||||
empty_val', cons_val_fin_one, cons_val_zero, _root_.map_mul, VubAbs, cons_val_two, tail_cons,
|
||||
VcbAbs, VudAbs, Complex.abs_ofReal]
|
||||
by_cases hx : Real.cos θ₁₃ ≠ 0
|
||||
|
|
|
@ -142,17 +142,17 @@ lemma S₂₃_eq_ℂsin_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.sin (
|
|||
(ofReal_sin _).symm.trans (congrArg ofReal (S₂₃_eq_sin_θ₂₃ V))
|
||||
|
||||
lemma complexAbs_sin_θ₁₂ (V : Quotient CKMMatrixSetoid) :
|
||||
Complex.abs (Complex.sin (θ₁₂ V)) = sin (θ₁₂ V):= by
|
||||
Complex.abs (Complex.sin (θ₁₂ V)) = sin (θ₁₂ V) := by
|
||||
rw [S₁₂_eq_ℂsin_θ₁₂, Complex.abs_ofReal, ofReal_inj, abs_eq_self]
|
||||
exact S₁₂_nonneg _
|
||||
|
||||
lemma complexAbs_sin_θ₁₃ (V : Quotient CKMMatrixSetoid) :
|
||||
Complex.abs (Complex.sin (θ₁₃ V)) = sin (θ₁₃ V):= by
|
||||
Complex.abs (Complex.sin (θ₁₃ V)) = sin (θ₁₃ V) := by
|
||||
rw [S₁₃_eq_ℂsin_θ₁₃, Complex.abs_ofReal, ofReal_inj, abs_eq_self]
|
||||
exact S₁₃_nonneg _
|
||||
|
||||
lemma complexAbs_sin_θ₂₃ (V : Quotient CKMMatrixSetoid) :
|
||||
Complex.abs (Complex.sin (θ₂₃ V)) = sin (θ₂₃ V):= by
|
||||
Complex.abs (Complex.sin (θ₂₃ V)) = sin (θ₂₃ V) := by
|
||||
rw [S₂₃_eq_ℂsin_θ₂₃, Complex.abs_ofReal, ofReal_inj, abs_eq_self]
|
||||
exact S₂₃_nonneg _
|
||||
|
||||
|
@ -185,19 +185,19 @@ lemma C₂₃_eq_ℂcos_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.cos (
|
|||
simp [C₂₃]
|
||||
|
||||
lemma complexAbs_cos_θ₁₂ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₁₂ V)) =
|
||||
cos (θ₁₂ V):= by
|
||||
cos (θ₁₂ V) := by
|
||||
rw [C₁₂_eq_ℂcos_θ₁₂, Complex.abs_ofReal]
|
||||
simp only [ofReal_inj, abs_eq_self]
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
||||
lemma complexAbs_cos_θ₁₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₁₃ V)) =
|
||||
cos (θ₁₃ V):= by
|
||||
cos (θ₁₃ V) := by
|
||||
rw [C₁₃_eq_ℂcos_θ₁₃, Complex.abs_ofReal]
|
||||
simp only [ofReal_inj, abs_eq_self]
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
||||
lemma complexAbs_cos_θ₂₃ (V : Quotient CKMMatrixSetoid) : Complex.abs (Complex.cos (θ₂₃ V)) =
|
||||
cos (θ₂₃ V):= by
|
||||
cos (θ₂₃ V) := by
|
||||
rw [C₂₃_eq_ℂcos_θ₂₃, Complex.abs_ofReal]
|
||||
simp only [ofReal_inj, abs_eq_self]
|
||||
exact Real.cos_arcsin_nonneg _
|
||||
|
@ -349,10 +349,10 @@ lemma mulExpδ₁₃_on_param_δ₁₃ (V : CKMMatrix) (δ₁₃ : ℝ) :
|
|||
|
||||
lemma mulExpδ₁₃_on_param_eq_zero_iff (V : CKMMatrix) (δ₁₃ : ℝ) :
|
||||
mulExpδ₁₃ ⟦standParam (θ₁₂ ⟦V⟧) (θ₁₃ ⟦V⟧) (θ₂₃ ⟦V⟧) δ₁₃⟧ = 0 ↔
|
||||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0 := by
|
||||
VudAbs ⟦V⟧ = 0 ∨ VubAbs ⟦V⟧ = 0 ∨ VusAbs ⟦V⟧ = 0 ∨ VcbAbs ⟦V⟧ = 0 ∨ VtbAbs ⟦V⟧ = 0 := by
|
||||
rw [VudAbs_eq_C₁₂_mul_C₁₃, VubAbs_eq_S₁₃, VusAbs_eq_S₁₂_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃,
|
||||
VtbAbs_eq_C₂₃_mul_C₁₃, ← ofReal_inj,
|
||||
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
|
||||
VtbAbs_eq_C₂₃_mul_C₁₃, ← ofReal_inj,
|
||||
← ofReal_inj, ← ofReal_inj, ← ofReal_inj, ← ofReal_inj]
|
||||
simp only [ofReal_mul]
|
||||
rw [← S₁₃_eq_ℂsin_θ₁₃, ← S₁₂_eq_ℂsin_θ₁₂, ← S₂₃_eq_ℂsin_θ₂₃,
|
||||
← C₁₃_eq_ℂcos_θ₁₃, ← C₂₃_eq_ℂcos_θ₂₃,← C₁₂_eq_ℂcos_θ₁₂]
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue