refactor: Lint

This commit is contained in:
jstoobysmith 2024-10-16 10:57:46 +00:00
parent 691b7e112e
commit a1d3616a18
10 changed files with 65 additions and 62 deletions

View file

@ -7,7 +7,6 @@ import HepLean.SpaceTime.MinkowskiMetric
import HepLean.SpaceTime.PauliMatrices.SelfAdjoint
import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
import Mathlib.Tactic.Polyrith
import LLMLean
/-!
# Lorentz vector as a self-adjoint matrix
@ -34,11 +33,11 @@ lemma toSelfAdjointMatrix_apply (x : LorentzVector 3) : toSelfAdjointMatrix x =
x (Sum.inl 0) • ⟨PauliMatrix.σ0, PauliMatrix.σ0_selfAdjoint⟩
- x (Sum.inr 0) • ⟨PauliMatrix.σ1, PauliMatrix.σ1_selfAdjoint⟩
- x (Sum.inr 1) • ⟨PauliMatrix.σ2, PauliMatrix.σ2_selfAdjoint⟩
- x (Sum.inr 2) • ⟨PauliMatrix.σ3, PauliMatrix.σ3_selfAdjoint⟩ := by
- x (Sum.inr 2) • ⟨PauliMatrix.σ3, PauliMatrix.σ3_selfAdjoint⟩ := by
simp only [toSelfAdjointMatrix, PauliMatrix.σSAL, LinearEquiv.trans_apply, Basis.repr_symm_apply,
Basis.coe_mk, Fin.isValue]
rw [Finsupp.linearCombination_apply_of_mem_supported (s := Finset.univ)]
· change (∑ i : Fin 1 ⊕ Fin 3, x i • PauliMatrix.σSAL' i) = _
· change (∑ i : Fin 1 ⊕ Fin 3, x i • PauliMatrix.σSAL' i) = _
simp [Fin.sum_univ_three, PauliMatrix.σSAL']
apply Subtype.ext
simp only [Fin.isValue, AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg,
@ -50,7 +49,7 @@ lemma toSelfAdjointMatrix_apply_coe (x : LorentzVector 3) : (toSelfAdjointMatrix
x (Sum.inl 0) • PauliMatrix.σ0
- x (Sum.inr 0) • PauliMatrix.σ1
- x (Sum.inr 1) • PauliMatrix.σ2
- x (Sum.inr 2) • PauliMatrix.σ3 := by
- x (Sum.inr 2) • PauliMatrix.σ3 := by
rw [toSelfAdjointMatrix_apply]
simp only [Fin.isValue, AddSubgroupClass.coe_sub, selfAdjoint.val_smul]
@ -61,21 +60,21 @@ lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) :
| Sum.inl 0 =>
simp [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
| Sum.inr 0 =>
simp [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
| Sum.inr 1 =>
simp [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
| Sum.inr 2 =>
simp [LorentzVector.stdBasis]
erw [Pi.basisFun_apply]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
@[simp]

View file

@ -74,6 +74,8 @@ lemma complexCoBasis_ρ_apply (M : SL(2,)) (i j : Fin 1 ⊕ Fin 3) :
-/
/-- The semilinear map including real Lorentz vectors into complex contravariant
lorentz vectors. -/
def inclCongrRealLorentz : LorentzVector 3 →ₛₗ[Complex.ofReal] complexContr where
toFun v := {val := ofReal ∘ v}
map_add' x y := by
@ -97,9 +99,9 @@ lemma inclCongrRealLorentz_val (v : LorentzVector 3) :
lemma complexContrBasis_of_real (i : Fin 1 ⊕ Fin 3) :
(complexContrBasis i) = inclCongrRealLorentz (LorentzVector.stdBasis i) := by
apply Lorentz.ContrModule.ext
simp [complexContrBasis, inclCongrRealLorentz, LorentzVector.stdBasis, ]
simp [complexContrBasis, inclCongrRealLorentz, LorentzVector.stdBasis]
ext j
simp
simp only [Function.comp_apply, ofReal_eq_coe]
erw [Pi.basisFun_apply]
change (Pi.single i 1) j = _
exact Eq.symm (Pi.apply_single (fun _ => ofReal') (congrFun rfl) i 1 j)
@ -111,11 +113,10 @@ lemma inclCongrRealLorentz_ρ (M : SL(2, )) (v : LorentzVector 3) :
rw [complexContrBasis_ρ_val, inclCongrRealLorentz_val, inclCongrRealLorentz_val]
rw [LorentzGroup.toComplex_mulVec_ofReal]
apply congrArg
simp
simp only [SL2C.toLorentzGroup_apply_coe]
rw [SL2C.repLorentzVector_apply_eq_mulVec]
rfl
lemma SL2CRep_ρ_basis (M : SL(2, )) (i : Fin 1 ⊕ Fin 3) :
(complexContr.ρ M) (complexContrBasis i) =
∑ j, (SL2C.toLorentzGroup M).1 j i •

View file

@ -32,7 +32,6 @@ structure ContrModule where
namespace ContrModule
/-- The equivalence between `ContrModule` and `Fin 1 ⊕ Fin 3 → `. -/
def toFin13Fun : ContrModule ≃ (Fin 1 ⊕ Fin 3 → ) where
toFun v := v.val