refactor: Lint
This commit is contained in:
parent
691b7e112e
commit
a1d3616a18
10 changed files with 65 additions and 62 deletions
|
@ -7,7 +7,6 @@ import HepLean.SpaceTime.MinkowskiMetric
|
|||
import HepLean.SpaceTime.PauliMatrices.SelfAdjoint
|
||||
import Mathlib.LinearAlgebra.Matrix.SpecialLinearGroup
|
||||
import Mathlib.Tactic.Polyrith
|
||||
import LLMLean
|
||||
/-!
|
||||
# Lorentz vector as a self-adjoint matrix
|
||||
|
||||
|
@ -34,11 +33,11 @@ lemma toSelfAdjointMatrix_apply (x : LorentzVector 3) : toSelfAdjointMatrix x =
|
|||
x (Sum.inl 0) • ⟨PauliMatrix.σ0, PauliMatrix.σ0_selfAdjoint⟩
|
||||
- x (Sum.inr 0) • ⟨PauliMatrix.σ1, PauliMatrix.σ1_selfAdjoint⟩
|
||||
- x (Sum.inr 1) • ⟨PauliMatrix.σ2, PauliMatrix.σ2_selfAdjoint⟩
|
||||
- x (Sum.inr 2) • ⟨PauliMatrix.σ3, PauliMatrix.σ3_selfAdjoint⟩ := by
|
||||
- x (Sum.inr 2) • ⟨PauliMatrix.σ3, PauliMatrix.σ3_selfAdjoint⟩ := by
|
||||
simp only [toSelfAdjointMatrix, PauliMatrix.σSAL, LinearEquiv.trans_apply, Basis.repr_symm_apply,
|
||||
Basis.coe_mk, Fin.isValue]
|
||||
rw [Finsupp.linearCombination_apply_of_mem_supported ℝ (s := Finset.univ)]
|
||||
· change (∑ i : Fin 1 ⊕ Fin 3, x i • PauliMatrix.σSAL' i) = _
|
||||
· change (∑ i : Fin 1 ⊕ Fin 3, x i • PauliMatrix.σSAL' i) = _
|
||||
simp [Fin.sum_univ_three, PauliMatrix.σSAL']
|
||||
apply Subtype.ext
|
||||
simp only [Fin.isValue, AddSubgroup.coe_add, selfAdjoint.val_smul, smul_neg,
|
||||
|
@ -50,7 +49,7 @@ lemma toSelfAdjointMatrix_apply_coe (x : LorentzVector 3) : (toSelfAdjointMatrix
|
|||
x (Sum.inl 0) • PauliMatrix.σ0
|
||||
- x (Sum.inr 0) • PauliMatrix.σ1
|
||||
- x (Sum.inr 1) • PauliMatrix.σ2
|
||||
- x (Sum.inr 2) • PauliMatrix.σ3 := by
|
||||
- x (Sum.inr 2) • PauliMatrix.σ3 := by
|
||||
rw [toSelfAdjointMatrix_apply]
|
||||
simp only [Fin.isValue, AddSubgroupClass.coe_sub, selfAdjoint.val_smul]
|
||||
|
||||
|
@ -61,21 +60,21 @@ lemma toSelfAdjointMatrix_stdBasis (i : Fin 1 ⊕ Fin 3) :
|
|||
| Sum.inl 0 =>
|
||||
simp [LorentzVector.stdBasis]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
|
||||
| Sum.inr 0 =>
|
||||
simp [LorentzVector.stdBasis]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
|
||||
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
|
||||
| Sum.inr 1 =>
|
||||
simp [LorentzVector.stdBasis]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
|
||||
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
|
||||
| Sum.inr 2 =>
|
||||
simp [LorentzVector.stdBasis]
|
||||
erw [Pi.basisFun_apply]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL' ]
|
||||
simp [PauliMatrix.σSAL, PauliMatrix.σSAL']
|
||||
refine Eq.symm (PauliMatrix.selfAdjoint_ext rfl rfl rfl rfl)
|
||||
|
||||
@[simp]
|
||||
|
|
|
@ -74,6 +74,8 @@ lemma complexCoBasis_ρ_apply (M : SL(2,ℂ)) (i j : Fin 1 ⊕ Fin 3) :
|
|||
|
||||
-/
|
||||
|
||||
/-- The semilinear map including real Lorentz vectors into complex contravariant
|
||||
lorentz vectors. -/
|
||||
def inclCongrRealLorentz : LorentzVector 3 →ₛₗ[Complex.ofReal] complexContr where
|
||||
toFun v := {val := ofReal ∘ v}
|
||||
map_add' x y := by
|
||||
|
@ -97,9 +99,9 @@ lemma inclCongrRealLorentz_val (v : LorentzVector 3) :
|
|||
lemma complexContrBasis_of_real (i : Fin 1 ⊕ Fin 3) :
|
||||
(complexContrBasis i) = inclCongrRealLorentz (LorentzVector.stdBasis i) := by
|
||||
apply Lorentz.ContrℂModule.ext
|
||||
simp [complexContrBasis, inclCongrRealLorentz, LorentzVector.stdBasis, ]
|
||||
simp [complexContrBasis, inclCongrRealLorentz, LorentzVector.stdBasis]
|
||||
ext j
|
||||
simp
|
||||
simp only [Function.comp_apply, ofReal_eq_coe]
|
||||
erw [Pi.basisFun_apply]
|
||||
change (Pi.single i 1) j = _
|
||||
exact Eq.symm (Pi.apply_single (fun _ => ofReal') (congrFun rfl) i 1 j)
|
||||
|
@ -111,11 +113,10 @@ lemma inclCongrRealLorentz_ρ (M : SL(2, ℂ)) (v : LorentzVector 3) :
|
|||
rw [complexContrBasis_ρ_val, inclCongrRealLorentz_val, inclCongrRealLorentz_val]
|
||||
rw [LorentzGroup.toComplex_mulVec_ofReal]
|
||||
apply congrArg
|
||||
simp
|
||||
simp only [SL2C.toLorentzGroup_apply_coe]
|
||||
rw [SL2C.repLorentzVector_apply_eq_mulVec]
|
||||
rfl
|
||||
|
||||
|
||||
lemma SL2CRep_ρ_basis (M : SL(2, ℂ)) (i : Fin 1 ⊕ Fin 3) :
|
||||
(complexContr.ρ M) (complexContrBasis i) =
|
||||
∑ j, (SL2C.toLorentzGroup M).1 j i •
|
||||
|
|
|
@ -32,7 +32,6 @@ structure ContrℂModule where
|
|||
|
||||
namespace ContrℂModule
|
||||
|
||||
|
||||
/-- The equivalence between `ContrℂModule` and `Fin 1 ⊕ Fin 3 → ℂ`. -/
|
||||
def toFin13ℂFun : ContrℂModule ≃ (Fin 1 ⊕ Fin 3 → ℂ) where
|
||||
toFun v := v.val
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue