refactor: Lint
This commit is contained in:
parent
691b7e112e
commit
a1d3616a18
10 changed files with 65 additions and 62 deletions
|
@ -76,7 +76,7 @@ def altRightRightToMatrix : (altRightHanded ⊗ rightHanded).V ≃ₗ[ℂ] Matri
|
|||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||||
|
||||
/-- Equivalence of `altLeftHanded ⊗ altRightHanded` to `2 x 2` complex matrices. -/
|
||||
def altLeftAltRightToMatrix : (altLeftHanded ⊗ altRightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
def altLeftAltRightToMatrix : (altLeftHanded ⊗ altRightHanded).V ≃ₗ[ℂ] Matrix (Fin 2) (Fin 2) ℂ :=
|
||||
(Basis.tensorProduct altLeftBasis altRightBasis).repr ≪≫ₗ
|
||||
Finsupp.linearEquivFunOnFinite ℂ ℂ (Fin 2 × Fin 2) ≪≫ₗ
|
||||
LinearEquiv.curry ℂ ℂ (Fin 2) (Fin 2)
|
||||
|
@ -465,7 +465,7 @@ lemma altLeftAltRightToMatrix_ρ (v : (altLeftHanded ⊗ altRightHanded).V) (M :
|
|||
Action.instMonoidalCategory_tensorObj_V]
|
||||
ring
|
||||
|
||||
def leftRightToMatrix_ρ (v : (leftHanded ⊗ rightHanded).V) (M : SL(2,ℂ)) :
|
||||
lemma leftRightToMatrix_ρ (v : (leftHanded ⊗ rightHanded).V) (M : SL(2,ℂ)) :
|
||||
leftRightToMatrix (TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) v) =
|
||||
M.1 * leftRightToMatrix v * (M.1)ᴴ := by
|
||||
nth_rewrite 1 [leftRightToMatrix]
|
||||
|
@ -490,7 +490,7 @@ def leftRightToMatrix_ρ (v : (leftHanded ⊗ rightHanded).V) (M : SL(2,ℂ)) :
|
|||
erw [Finset.sum_product]
|
||||
simp_rw [kroneckerMap_apply, Matrix.mul_apply]
|
||||
have h1 : ∑ x : Fin 2, (∑ x1 : Fin 2, M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j
|
||||
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j := by
|
||||
= ∑ x : Fin 2, ∑ x1 : Fin 2, (M.1 i x1 * leftRightToMatrix v x1 x) * (M.1)ᴴ x j := by
|
||||
congr
|
||||
funext x
|
||||
rw [Finset.sum_mul]
|
||||
|
@ -613,7 +613,7 @@ lemma altLeftAltRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2)
|
|||
rw [← @adjugate_transpose]
|
||||
rfl
|
||||
|
||||
lemma leftRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) ℂ)
|
||||
lemma leftRightToMatrix_ρ_symm_selfAdjoint (v : Matrix (Fin 2) (Fin 2) ℂ)
|
||||
(hv : IsSelfAdjoint v) (M : SL(2,ℂ)) :
|
||||
TensorProduct.map (leftHanded.ρ M) (rightHanded.ρ M) (leftRightToMatrix.symm v) =
|
||||
leftRightToMatrix.symm
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue